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Abstract

The aim of this paper is to check if the models with realistic inhomogeneous matter
distribution and without cosmological constant can explain the dimming of the supernovae
in such a way that it can be interpreted as an acceleration of the Universe. Employing the
simplest inhomogeneous model, i.e. Lemaître-Tolman model, this paper examines the
impact of inhomogeneous matter distribution on light propagation. These analyses show
that realistic matter fluctuations on small scales induce brightness fluctuations in the
residual Hubble diagram of amplitude around 0.15 mag, and thus can mimic acceleration.
However, it is different on large scales. All these brightness fluctuations decrease with
distance and hence cannot explain the dimmining of supernovae for high redshift without
without invoking the cosmological constant. This paper concludes that models with
realistic matter distribution (i.e. where variation of the density contrast is similar to what
is observed in the local Universe) cannot explain the observed dimming of supernovae
without the cosmological constant.

PACS Codes: 98.65.Dx, 98.65.-r, 98.62.Ai

1 Introduction
This paper examines the supernova observations in order to thoroughly estimate the influence of

inhomogeneities on light propagation. Studies in this field proved that inhomogeneities can

mimic the cosmological constant. However, this does not prove consistent with other astronom-

ical observations. This paper provides some quantitative insight to matter fluctuations' influence

in terms of the amplitude, δm, measured in the residual Hubble diagram.

The observations of supernovae are a powerful tool in modern cosmology. Analyses of the

supernova brightness provide us with a reliable estimation of their distance from an observer. For

this estimation to be satisfactory, all factors which might influence the observed supernova lumi-

nosity must be taken into account. In literature five factors are examined; namely, evolution of

supernovae, dust absorption, selective bias, gravitational lensing, and cosmological models.

Except for the last one they do not seem to be responsible for observed 'dimming' (for details see

Refs. [1-5]]). Analyses of supernovae in various homogeneous cosmological models imply a non-
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zero cosmological constant. However, similar analyses in inhomogeneous models have not been

systematically studied.

The luminosity distance of supernovae without the homogeneity assumption is to be analysed

as well. The luminosity distance in inhomogeneous models might differ from the FLRW results.

To examine this issue the Lemaître-Tolman model is employed. In this approach not only matter

is inhomogeneously distributed but the expansion of the space in not uniform as well. Results in

the form of the residual Hubble diagram provide us with the estimation of the impact of matter

inhomogeneities.

The effect of inhomogeneous matter distribution on supernova observations was studied by

many authors. For example employing the Lemaître-Tolman model and the Taylor expansion of

the luminosity distance in powers of the redshift Célérier [6] showed that the inhomogeneities

can mimic the cosmological constant. Iguchi, Nakamura and Nakao [7] also used the Lemaître-

Tolman model to show that it is possible to fit supernova data without the cosmological con-

stant. Similar results were obtained in the Stephani model by Godłowski, Stelmach and Szyd-

łowski [8]. and in the Szafron model [9]. Also models by Alnes, Amarzguioui and Gron [10]

where the density is increasing with distance and models by Enqvist and Mattsson where expan-

sion is decreasing with distance [11] successfully fit supernova data without a need for the cos-

mological constant. There have also been other models proposed, in particular Swiss cheese

models by Mansouri [12] and Brouzakis, Tetradis and Tzavara [13,14]. For a review on explana-

tion of the acceleration expansion without the cosmological constant the reader is referred to Ref.

[15]. The effect of inhomogeneities was also studied with aid of approximate methods [16-18].

Recently Vanderveld, Flanagan and Wasserman [19] studied this issue using perturbation

approach up to the second order in density fluctuations. Their results are similar to [16-18] and

indicate that the effect of inhomogeneity on the expansion of the Universe is small and thus can-

not explain the apparent acceleration. However, because of the perturbation framework their

results are valid only for small values of density fluctuations. Since the real density fluctuations

in our Universe largely exceed δ ~ 1 in order to draw reliable conclusion similar analyses should

be conducted by employing exact solution of the Einstein equations.

These studies have shown that matter inhomogeneities can explain the apparent acceleration

of our Universe without employing the cosmological constant. This paper not only indicates that

there are some specific conditions which enable explanation of the supernova dimming without

but also examines the influences of the realistic matter distribution on light propagation.

The structure of this paper is as follows: Sec. 2 presents the Lemaître-Tolman model; in Sec. 3

presents observational constraints; Sec. 4.1.1 presents the residual Hubble diagram for models

with realistic density distribution but without the cosmological constant; Sec. 4.1.2 presents

results of fitting models to the supernova measurements without the cosmological constant; Sec.
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4.2 presents the residual Hubble diagram for models with the realistic density distribution and

with the cosmological constant.

2 The Lemaître-Tolman model
The Lemaître-Tolman [20,21] model is a spherically symmetric solution of the Einstein equa-

tions with a dust source. In comoving and synchronous coordinates, the metric is:

where dΩ2 = dθ2 + sin2 θdφ2, and E(r) is an arbitrary function of r. Because of the signature (+, -,

-, -), this function must obey E(r) ≥ - .

The Einstein equations can be reduced and presented as follows:

where M(r) is another arbitrary function and .

When R' = 0 and M' ≠ 0, the density becomes infinite. This happens at shell crossings. This is

an additional singularity to the Big Bang that occurs at R = 0, M' ≠ 0. The shell crossing can be

avoided by setting the initial conditions appropriately [22].

Equation (3) can be solved by a simple integration:

where tB(r) appears as an integration constant, and is an arbitrary function of r. This means that

unlike in the Friedmann models the Big Bang is not a single event, but it can occur at different

times at different distances from the origin.

Thus, the evolution of the Lemaître-Tolman model is determined by three arbitrary functions:

E(r), M(r), and tB(r). The metric and all the formulae are covariant under arbitrary coordinate
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transformations of the form r = f(r'). Using such a transformation, one of the functions determin-

ing the Lemaître-Tolman model can be given a desired form. Therefore, the physical initial data

of the Lemaître-Tolman model evolution consists of two arbitrary functions (see Ref. [23] on

how to specify the Lemiaître-Tolman model).

2.1 The Hubble parameter

In the Friedmann limit R → ra [a(t) is the scale factor], so the simplest generalisation of the

Hubble constant which in Friedmann models is H0 = /a would be H = /R. However, from the

comparison of the approximate distance-redshift relation [24,27] with the Hubble law, the

Hubble parameter would rather be H = '/R'. However, the above mentioned relation is valid

only for low redshift and thus if one analyses astronomical data of high redshift one should refer

to the definition of the Hubble constant based on the rate of volume change [24], i.e. H = (1/3)Θ

(where Θ is the scalar of the expansion), which in the Lemaître-Tolman model is:

The above ambiguity in the definitions of the Hubble constant shows that one should be very

careful in measuring the parameter which is called the Hubble constant. For example the value

of the Hubble constant derived from the continuity equation: Hc = -(1/3)( /ρ) (where ρ is den-

sity) is in general not equal to the Hubble constant derived from the measurements of the

Hubble flow: Hf = V/D (where V is the receding velocity, D distance).

In this paper when referring to the Hubble parameter it is assumed that the Hubble parameter

is defined by eq. (5). Please note that at origin because of the regularity condition [25]R → ra and

H coincides with H0.

2.2 The redshift formula

Light propagates along null geodesics. The vector tangent to the null geodesic, kα, obeyes the fol-

lowing relation:

kα;βk
β = 0. (6)

As light propagates the frequency of photon changes. The ratio of the frequency at the emis-

sion instant to the frequency at the observation moment defines the redshift:
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The energy of photons measured by an observer with a 4-velocity uα is proportional to kαuα.

Thus, the redshift formula is as follows:

where subscripts e and o refers to instants of emission and observations respectively.

In the Lemaître-Tolman model the above formula reduces to [26,27]:

where all the above quantities are evaluated at the null cone, i.e. they can be calculated by solving

the following equation:

From eq. (3) we obtain:

Models considered in this paper were defined by functions presented in Table 1. The radial

coordinate was chosen as a present day value of the areal radius, i.e. r := R0. In the case when

model is defined by a pair tB and ρ, M(r) is calculated from eq. (2) then the function E(r) is cal-

culated from eq. (4). In the case when model is defined by a pair H(r) and ρ, M(r) is calculated

from eq. (2), then  is calculated from eq. (5), and finally eq. (3) is used to calculate E(r).

Once the functions M (r), E(r) are known, the evolution equation – eq. 3 – can be solved and

the evolution of the model can be traced back in time. Simultaneously eq. (10) is solved in order

to calculate all quantities at the null cone. Then, using eqs. (11) and (9) the redshift can be esti-

mated. Finally, from the reciprocity theorem [24], the luminosity distance is calculated using the

following relation:
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DL(t(r), r) = R(t(r), r)(1 + z)2. (12)

3 Observational constrains
The astronomical observations providing us with information about the local Universe prove

that matter distribution and expansion of the space are not homogeneous.

The measurement of the matter distribution implies that the density contrast (δ = ρ/ρb - 1) var-

ies from δ ≈ -1 in voids [28] to d equal to several tens in clusters [29]. These structures are of diam-

eters varying from several Mpc up to several tens of Mpc. However, if averaging is considered on

large scales, the density varies from 0.3ρb to 4.4ρb [30,31] and the structure sizes are of several

tens of Mpc. So far there is no observational evidence that structures larger than supercluster, i.e.

of diameters of hundreds of Mpc or larger exist in the Universe.

The measurements of the Hubble constant provide us with different values of H0 – from 61 ±

3 (random) ± 18 (systematic) km s-1 Mpc-1 [32], to H0 = 77 ± 4 ± 7 km s-1 Mpc-1 [33]. However,

due to very large observational and systematical errors (larger than 10%) it is impossible to

observe any variations of the Hubble constant.

This paper assumes that any realistic model must remain consistent with the above astronom-

ical data. Namely, in models with the Hubble parameter as a variable we expect these variations

to stay within the range indicated by the above observations. Analogously, in models with an

inhomogeneous density distribution, we expect the density fluctuations to remain within the

range indicated by the observations.

4 Results
The supernova observations are provided by the gold data set [2]. This data is presented in form

of the distance moduli, i.e.:

μ = m - M = 5 log D + 25 (13)

Table 1: The exact form of functions used to define models 1–9.

Model Pair of functions

model 1 tB = 0; ρ/ρb = 0.5 + 0.2 cos(10-5πrMpc-1) + 0.5 cos2(10-5πrMpc-1)
model 2 tB = 0; ρ/ρb = 0.4 + 0.6 cos(2 × 10-5πrMpc-1) + 1.8 cos2(2 × 10-5πrMpc-1)
model 3 tB = 0; ρ/ρb = 1 + 0.4 cos(10-5πrMpc-1)
model 4 tB = 0; ρ/ρb = 1 + (8 × 10-6rMpc-1)0.55

model 5 ρ/ρb = 1;
H/H0 – not an analytic functions, see Fig. 4.1.2

model 6 tB = 0; H/H0 = 1
model 7 as in model 1
model 8 as in model 2
model 9 as in model 3
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where m represents an observed magnitude, M – absolute magnitude, and D – luminosity dis-

tance expressed in Mpc. The usual way of presenting the supernova data is the residual Hubble

diagram. The residual Hubble diagram presents Δm as a function of redshift:

where memp is an expected magnitude in an empty RW model.

The luminosity distance in the empty cosmology is larger than in the decelerating FLRW uni-

verse but it is smaller than in the accelerating FLRW universe. Therefore, if the supernovae are

fainter (of higher magnitude) than they would be for an empty universe, this is interpreted as an

evidence of acceleration. In the analyses below the results are presented in the form of the resid-

ual Hubble diagrams. The chosen background model, on which fluctuations will be imposed, is

the FLRW model with the density:

and the Hubble constant H0 = 65 km s-1 Mpc-1.

4.1 Models without cosmological constant
This section examines if the observed dimming of the supernova brightness may be caused

merely by the matter inhomogeneities, without employing the cosmological constant. To do so

the cosmological constant is set to zero and presureless matter is assumed to be the only compo-

nent of the Universe.

4.1.1 Realistic fluctuations

Astronomical observations of the local Universe indicate that its density varies from low values

in voids to high values in clusters. Models 1, 2 and 3 are rough estimates of this phenomenon.

In model 1 the majority of regions through which supernova light propagates are of low den-

sity. In model 2 most regions' density is higher than the background density. Model 3 has a

cosine variation of density and its average density is of the background value. The exact form of

these fluctuations is presented in Table 1. Alhtough the density distribution in above models is

spherically symmetric and the real matter distribution in the Universe is not, such estimation is

adequate if the time of the light propagation is small. For larger periods of time the evolution of

matter becomes important. However since redshift z ≈ 0.5 the Universe did not evolve signifi-

cantly, so up to redshifts z ≈ 0.5 the analysis presented here should not differ significantly form

reality. For higher redshifts we may expect larger differences between the results of these models
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and the real picture. Despite these differences, such analysis is important because it provides us

with estimation of the influence of light propagation effects on the final results of supernova

observations.

Current density distributions are equal to these shown in Fig. 1. Note that this graph only rep-

resents density up to 200 Mpc to demonstrate a periodic character of assumed density distribu-

tions. As mentioned in Sec. 2 to specify the Lemaître-Tolman model two initial conditions have

to be known. The first initial condition is the density distribution. The second initial data in this

section is the distribution of the bang time function. It is assumed that tB(r) = 0. This assumption

follows from the Cosmic Microwave Background (CMB) observations. These observations imply

that the Universe was very homogeneous at the last scattering moment and as a consequence the

amplitude of the bang time function could not be larger than a few thousand years, which in com-

parison with the present age of the Universe is negligible. If the tB were of larger value the tem-

perature fluctuations would be greater than it is observed in the CMB sky [34].

Using the algorithm from Sec. 2 the luminosity distance was calculated for the three above

mentioned models.

The results are presented in the form of the residual Hubble diagram in Fig. 2 and indicate that

realistic density fluctuations can mimic the acceleration on small scales. Firstly, in the residual

diagram there are some regions where m is positive. Secondly, in some regions the luminosity

distance increases faster than in the FLRW models. However, on large scales, a tendency for curves

to decrease remains unchanged. Near the origin the fluctuations in residual diagram are large and

are approximately equal to 0.15 mag, but they are decreasing with distance.

Density distribution models 1, 2 and 3 (Sec. 4.1.1), and models 7, 8, 9 (Sec 4.2)Figure 1
Density distribution models 1, 2 and 3 (Sec. 4.1.1), and models 7, 8, 9 (Sec 4.2).
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Fig. 2 also depicts the curve for the homogeneous Ωmat = 0.27, ΩΛ = 0 model which, however,

is not clearly visible due to very tight fluctuations of model 3 around it. Curve 2 presented in Fig.

2 lies above the curve of the the homogeneous hyperbolic model because in this model the

expansion of the space is smaller than the expansion of the homogeneous Universe. This is

because in this model the density of regions through which light propagates is larger than the

background density. In model 1, a vast majority of the region is of lower density, hence, curve 1

is below the curve representing the hyperbolic homogeneous Universe. As one can see, if Λ = 0,

the realistic density fluctuations alone cannot be responsible for the observed dimming of the

supernova brightness.

4.1.2 Fitting the observations

It has been proved that the Lemaître-Tolman model may be fitted to any set of observational data

[35]. Thus, the Lemaître-Tolman model can always be fitted to supernova data, without employ-

ing a cosmological constant. Nevertheless, if such a fitted model is in consistent with all the astro-

nomical data (such as galaxy redshift surveys, CMB), then the problem remains unresolved. This

section addresses the above mentioned problems.

To specify a Lemaître-Tolman model one needs to know two initial functions. The functions

such as E(r) or M(r) are difficult to extract from observations. However, the observations provide

us with the measurements of ρ, H0 and tB. In this section these functions are chosen to enable one

of them to be consistent with the astronomical observations, while the second function remains

in accordance with the supernova observations as much as possible.

The Following models are considered:

Magnitude residual diagram for models 1, 2 and 3Figure 2
Magnitude residual diagram for models 1, 2 and 3. For clarity supernova data (gold data set) from Ref. [2] is only 
presented for redshifts larger than 0.4.
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1. Model 4

In model 4 the bang time function tB(r) = 0 is consistent with the CMB observations. The density

distribution is chosen so that it fits the supernova observations. The results are presented in Fig.

3. The values of χ2 test are presented in Table 2. The density distribution in model 4 monotoni-

cally increases; from an average value (ρ = ρb) at the origin to a value of ρ = 2.5ρb at the distance

of 3 Gpc. The increase of density yields a decrease of the expansion. Fig. 4. presents the Hubble

parameter (as defined by eq. (5)).

If local density and Hubble flow measurements extend up to the distance of Gpc then it might

be supposed that model 4 is unrealistic. However, there are no systematic observations of the

density distribution or expansion at distances of Gpc and all that is really known is that the rel-

ative motion of our Galaxy with respect to the CMB is small. This implies that to explain the rel-

atively small motion with respect to the CMB rest frame the expansion of the Universe should

increase at a larger distace. As can be seen the Lemaître-Tolman model is of a great flexibility so

one can always choose such functions which would fit the CMB (the diameter distance to the sur-

face of the last scattering is approximately 14 Gpc). This, however, requires futher complications

of such a model.

2. Model 5

In model 5 the density distribution is assumed to be equal to the background value ρ = ρb. This

implies that no Gpc-scale structures exist in it. The second function which defines the Lemaître-

Tolman model is the Hubble parameter which is chosen to fit the supernova observations. The

variations of the Hubble parameter are presented in Fig. 4.

The residual Hubble diagram for models 4 and 5Figure 3
The residual Hubble diagram for models 4 and 5.
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As can be seen in Fig. 4 the variations of the

Hubble parameter are comparable within 3σ
estimation of the Hubble constant. However,

such a behaviour is rather unrealistic, and

together with model 4 suggests the existence of

very large scale structures (of several Gpc

diameters). Furthermore, in model 5 the bang

time function is very inhomogeneous and

decreases to almost -1.7 billions years at dis-

tance of 2.4. Such a large amplitude of tB is

strongly inconsistent with CMB observations.

3. Model 6

In this model the Hubble parameter is chosen to be of 65 km s-1Mpc-1. The density and tB(r) are

chosen to fit the supernova data. However, none of the attempts to obtain a satisfactory fit to the

observational data succeeded. The best fitted model within the family of constant H models is

the empty FLRW model (with Δm = 0).

The above results suggest that the only way to fit the supernova data is to set the expansion of

the Universe to be decreasing on the past null-cone. This can be done either be setting the expan-

sion of the Universe to be decreasing with radial coordinate (models 4 and 5) or to assume the

existence of cosmological constant (standard approach). The first alternative implies that the cos-

mological constant is not needed but our position in the Universe is very special and that on the

scales of Gpc there exist large structure in the Universe. The second alternative is that the models

The Hubble parameter for models 4 and 5Figure 4
The Hubble parameter for models 4 and 5.
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Table 2: Test χ2 of fitting the supernova observations.

Model

model 1 2.05
model 2 1.46
model 3 1.62
model 4 1.19
model 5 1.15
model 7 1.35
model 8 1.26
model 9 1.14
FLRW (Ωm = 0, ΩΛ = 0) 1.35
FLRW (Ωm = 0.27, ΩΛ = 0.73) 1.14
FLRW (Ωm = 0.27, ΩΛ = 0) 1.59

χNDF
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presented in this section support the present-day acceleration of the Universe as an explanation

of the supernova observations. Within the type of models considered above it is impossible to fit

the supernova data with realistic matter distribution (i.e. where variations of the density contrast

are similar to what is observed in the local Universe). Currently, in terms of analyses of observa-

tions it seems that these two interpretations are equally probable. The difference is in the philo-

sophical assumptions. The first interpretation requires that our position in the Universe is a

special one. This, however, cannot be proved right or wrong by any current observations. The gal-

axy redshift surveys, like SDSS or 2dFGRS, measure galaxis up to redshift only z ≈ 0.4. On the

other hand the CMB observation provide us with information about the state of the Universe

which is currently about 14 Gpc remote from us. Because of flexibility of the Lemaître-Tolman

model, models 4 and 5 can be fitted to the CMB data, simply by assuming that this Gpc-structure

is compensated by outer regions and than the Universe is homogeneous. This implies the

existance of very a large structure in the Universe, of diameters of order of Gpc. The second inter-

pretation is based on the assumption that our position in the Universe is not special at all and

on large scale the Universe is homogeneous. As mentioned above this assumption cannot be ver-

ified by observation, however there are some theoretical results that support this statement. These

are the Ehler-Geren-Sachs (EGS) [36] theorem and 'almost EGS theorem' [37] which states that

if anisotropies in the cosmic microwave background radiation are small for all observers then our

Universe must be 'almost FLRW' on large scales. Therefore, it seems that the interpretation that

the cosmological constant is of a non-zero value seems to be more probable.

4.2 Cosmological constant
This section investigates the light propagation in the inhomogeneous universe with the cosmo-

logical constant. The value of the cosmological constant corresponds to the concordance value,

ΩΛ = 0.73. Investigated models include model 7, 8, and 9. These models' density distribution is

similar to the density distribution of models 1, 2, and 3 respectively. The results of fitting these

models to supernova data are presented in Table 2.

Results presented in Fig. 5 indicate that realistic matter fluctuations (as in the case with no Λ)

introduce fluctuations to the residual Hubble diagram. These fluctuations are large for low red-

shifts but decrease fast for high redshifts. It can be seen from Table 2 that all models with fit the

supernova data better. The residual Hubble diagram presented in Fig. 5 shows that the influence

of the density fluctuations is significant only for small redshifts. It is uncertain whether this phe-

nomenon is real or is just a consequence of the spherical symmetry assumption. Within a small

distance from the origin, spherical symmetry is valid but as the distance increases it becomes less

accurate. Fig. 5 indicates that the amplitude of the fluctuations in the residual Hubble diagram is

decreasing with redshift. This can be due to the evolution – in the past, the density fluctuations

were of a smaller amplitude, hence the lower amplitude of fluctuations in the residual diagram.

However, the Universe has not evolved significantly since the redshit z ≈ 0.5. so it might be pos-

sible that in non-symmetrical models the amplitude of the magnitude fluctuations would not

decrease so fast as in our case. To confirm this hypothesis the above calculations should also be
Page 12 of 15
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repeated in the inhomogeneous nonsymmetrical model. If it is confirmed it could partly explain

the large scatter of the supernova data which is currently believed to be caused by numerous fac-

tors, like observational errors or non-uniform absolute brightness of the supernovae.

5 Conclusion
This paper investigates the propagation of the light of supernovae in the inhomogeneous Lemaî-

tre-Tolman model. The inhomogeneous models are of great flexibility and can fit the data with-

out invoking the cosmological constant, which has been proved by Mustapha, Hellaby and Ellis

[35]. Many authors before, like Célérier [6] or recently Alnes, Amarzguioui and Gron [10] have

proved that the matter inhomogeneities in the Lemaître-Tolman model can mimic the cosmo-

logical constant and thus can be an alternative to dark energy. However, this paper indicates that

the models which fit the supernova measurement without invoking the cosmological constant

are very peculiar (see model 4 and 5, Sec. 4.1.2). These models have either a very peculiar expan-

sion of the space (decreasing from the origin), or an unrealistic density distribution (increasing

from the origin) or/and a very large amplitude of the bang time function (tB(r)). Introducing the

Ockham's Razor principle, it is more likely that the Universe is accelerating rather than the condi-

tions in our position in the Universe are so very special and extraordinary that they could be pos-

sibly responsible for the observed dimmining of the supernova brightness.

The results show that in the inhomogeneous Lemaître-Tolman model the amplitude of bright-

ness fluctuations observed in the residual Hubble diagram is significantly large for low redshifts

of amplitude around 0.15 mag but it decreases for higher redshifts. Thus, for redshifts larger than

z ≈ 0.3 these fluctuations are neglgible. All this may be the result of the evolution (as in the past

the density fluctuations were smaller, and, consequently were of smaller influence on the bright-

ness fluctuations). However, it is also possible that this fast decrease can be due to the symmetry

Magnitude residual diagram for models 7, 8 and 9Figure 5
Magnitude residual diagram for models 7, 8 and 9. For clarity reason supernovae data (gold data set) from Ref. [2] 
are presented only for redshift larger than 0.4.
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restrictions. The Lemaître-Tolman model assumes a spherical symmetry which puts too many

constrains on the evolution and another parameters of the model. Therefore, it would be worth

investigating the light propagation in the models which are both non-symmetrical and inhomo-

geneous. If in the inhomogeneous and non-symmetrical models the magnitude fluctuations do

not decrease so fast, the observed scatter of supernova measurements might be partially possible

to explain.

The main conclusion of this paper is that matter inhomogeneities introduce the brightness

fluctuations to the residual Hubble diagram of amplitude approximately 0.15 mag for low red-

shifts, and thus can mimic the acceleration on small scales. However, to explain the excess of faint

supernovae without applying any special conditions (such as for instance peculiar expansion of

the Universe) the cosmological constant has to be employed.
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