Skip to main content

Table 8 Differential distribution and first and second moments for 3-jet resolution parameter ( y 23 J MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaciaacaqabeaabeqacmaaaOqaaiabdMha5naaDaaaleaacqaIYaGmcqaIZaWmaeaacqqGkbGsaaaaaa@2FA0@ ) in Jade algorithm at s MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaciaacaqabeaabeqacmaaaOqaamaaamaabaWaaOaaaeaacqWGZbWCaSqabaaakiaawMYicaGLQmcaaaa@2E5B@ = 197 GeV for all, non-b and b events.

From: Study of hadronic event shape in flavour tagged events in e+e- annihilation at s = 197 GeV

y 23 J MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaciaacaqabeaabeqacmaaaOqaaiabdMha5naaDaaaleaacqaIYaGmcqaIZaWmaeaacqqGkbGsaaaaaa@2FA0@ 1 σ d σ d y 23 J MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaciaacaqabeaabeqacmaaaOqaaKqbaoaalaaabaGaeGymaedabaGaeq4WdmhaaOGaeyyXICDcfa4aaSaaaeaacqqGKbazcqaHdpWCaeaacqqGKbazcqWG5bqEdaqhaaqaaiabikdaYiabiodaZaqaaiabbQeakbaaaaaaaa@3A39@ (All) 1 σ d σ d y 23 J MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaciaacaqabeaabeqacmaaaOqaaKqbaoaalaaabaGaeGymaedabaGaeq4WdmhaaOGaeyyXICDcfa4aaSaaaeaacqqGKbazcqaHdpWCaeaacqqGKbazcqWG5bqEdaqhaaqaaiabikdaYiabiodaZaqaaiabbQeakbaaaaaaaa@3A39@ (Non-b) y 23 J MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaciaacaqabeaabeqacmaaaOqaaiabdMha5naaDaaaleaacqaIYaGmcqaIZaWmaeaacqqGkbGsaaaaaa@2FA0@ 1 σ d σ d y 23 J MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaciaacaqabeaabeqacmaaaOqaaKqbaoaalaaabaGaeGymaedabaGaeq4WdmhaaOGaeyyXICDcfa4aaSaaaeaacqqGKbazcqaHdpWCaeaacqqGKbazcqWG5bqEdaqhaaqaaiabikdaYiabiodaZaqaaiabbQeakbaaaaaaaa@3A39@ (b)
0.000–0.012 37.89 ± 0.62 ± 3.70 33.51 ± 1.30 ± 3.25 0.000–0.012 29.89 ± 4.75 ± 4.44
0.012–0.024 12.82 ± 0.31 ± 0.75 13.47 ± 0.65 ± 0.81 0.012–0.024 11.72 ± 2.48 ± 0.96
0.024–0.036 7.04 ± 0.24 ± 0.56 7.34 ± 0.47 ± 0.58 0.024–0.036 6.41 ± 1.68 ± 1.03
0.036–0.048 4.93 ± 0.20 ± 0.47 5.18 ± 0.40 ± 0.54 0.036–0.048 6.03 ± 1.62 ± 1.66
0.048–0.060 3.63 ± 0.18 ± 0.49 3.82 ± 0.35 ± 0.74 0.048–0.060 4.07 ± 1.24 ± 1.15
0.060–0.072 2.73 ± 0.16 ± 0.35 3.21 ± 0.32 ± 0.37 0.060–0.072 4.19 ± 1.33 ± 0.95
0.072–0.084 2.12 ± 0.15 ± 0.26 2.20 ± 0.28 ± 0.32 0.072–0.084 1.54 ± 0.71 ± 0.55
0.084–0.096 2.01 ± 0.15 ± 0.24 2.29 ± 0.27 ± 0.34 0.084–0.096 1.91 ± 1.04 ± 0.57
0.096–0.108 1.66 ± 0.14 ± 0.20 1.97 ± 0.27 ± 0.24 0.096–0.120 2.22 ± 0.74 ± 0.62
0.108–0.120 1.14 ± 0.13 ± 0.31 1.14 ± 0.23 ± 0.30 0.120–0.144 1.67 ± 0.68 ± 0.80
0.120–0.144 1.26 ± 0.10 ± 0.11 1.39 ± 0.18 ± 0.13 0.144–0.168 1.74 ± 0.74 ± 0.75
0.144–0.168 0.69 ± 0.09 ± 0.11 0.82 ± 0.17 ± 0.15 0.168–0.204 0.89 ± 0.45 ± 0.50
0.168–0.204 0.47 ± 0.08 ± 0.08 0.72 ± 0.14 ± 0.18 0.204–0.252 0.55 ± 0.31 ± 0.22
0.204–0.252 0.31 ± 0.06 ± 0.06 0.41 ± 0.12 ± 0.10 0.252–0.300 0.35 ± 0.19 ± 0.15
0.252–0.300 0.21 ± 0.05 ± 0.04 0.24 ± 0.08 ± 0.08   
First Moment 0.044 ± 0.001 ± 0.003 0.048 ± 0.002 ± 0.003   0.060 ± 0.006 ± 0.008
Second Moment 0.005 ± 0.001 ± 0.001 0.006 ± 0.001 ± 0.001   0.008 ± 0.001 ± 0.002
  1. The first and the second errors refer to statistical and systematic uncertainties respectively.