Skip to main content

Table 5 Cross-sections values obtained at Q2 and W as a result of averaging over bins of the Q2 and W intervals given in the table. The normalisation uncertainty due to luminosity (± 2%) and proton-dissociative background (± 4%), are not included.

From: Exclusive ρ0 production in deep inelastic scattering at HERA

     σ(γ*pρ0p)
Q2 bin (GeV2) W bin (GeV) Q2 (GeV2) W (GeV) (nb) stat. syst.
2–3 32–40 2.4 36.0 451.9 ± 15.1 + 25.2 43.6 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaIYaGmcqaI1aqncqGGUaGlcqaIYaGmaeaacqGHsislcqaI0aancqaIZaWmcqGGUaGlcqaI2aGnaaaaaa@3458@
2–3 40–60 2.4 50.0 554.1 ± 11.5 + 31.6 39.2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaIZaWmcqaIXaqmcqGGUaGlcqaI2aGnaeaacqGHsislcqaIZaWmcqaI5aqocqGGUaGlcqaIYaGmaaaaaa@345C@
2–3 60–80 2.4 70.0 599.9 ± 13.9 + 28.5 38.5 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaIYaGmcqaI4aaocqGGUaGlcqaI1aqnaeaacqGHsislcqaIZaWmcqaI4aaocqGGUaGlcqaI1aqnaaaaaa@346A@
2–3 80–100 2.4 90.0 622.5 ± 17.3 + 33.8 43.2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaIZaWmcqaIZaWmcqGGUaGlcqaI4aaoaeaacqGHsislcqaI0aancqaIZaWmcqGGUaGlcqaIYaGmaaaaaa@345A@
2–3 100–120 2.4 110.0 690.1 ± 30.3 + 40.8 66.9 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaI0aancqaIWaamcqGGUaGlcqaI4aaoaeaacqGHsislcqaI2aGncqaI2aGncqGGUaGlcqaI5aqoaaaaaa@346E@
3–5 32–40 3.7 36.0 240.8 ± 8.0 + 9.5 15.5 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaI5aqocqGGUaGlcqaI1aqnaeaacqGHsislcqaIXaqmcqaI1aqncqGGUaGlcqaI1aqnaaaaaa@3370@
3–5 40–60 3.7 50.0 277.5 ± 5.9 + 12.2 15.3 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaIXaqmcqaIYaGmcqGGUaGlcqaIYaGmaeaacqGHsislcqaIXaqmcqaI1aqncqGGUaGlcqaIZaWmaaaaaa@3448@
3–5 60–80 3.7 70.0 303.7 ± 7.3 + 11.1 14.4 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaIXaqmcqaIXaqmcqGGUaGlcqaIXaqmaeaacqGHsislcqaIXaqmcqaI0aancqGGUaGlcqaI0aanaaaaaa@3444@
3–5 80–100 3.7 90.0 344.6 ± 9.4 + 10.4 17.2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaIXaqmcqaIWaamcqGGUaGlcqaI0aanaeaacqGHsislcqaIXaqmcqaI3aWncqGGUaGlcqaIYaGmaaaaaa@344A@
3–5 100–120 3.7 110.0 404.7 ± 15.5 + 15.2 22.5 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaIXaqmcqaI1aqncqGGUaGlcqaIYaGmaeaacqGHsislcqaIYaGmcqaIYaGmcqGGUaGlcqaI1aqnaaaaaa@344E@
5–7 32–40 6.0 36.0 88.5 ± 5.1 + 6.0 4.1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaI2aGncqGGUaGlcqaIWaamaeaacqGHsislcqaI0aancqGGUaGlcqaIXaqmaaaaaa@3266@
5–7 40–60 6.0 50.0 104.9 ± 3.6 + 3.6 6.9 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaIZaWmcqGGUaGlcqaI2aGnaeaacqGHsislcqaI2aGncqGGUaGlcqaI5aqoaaaaaa@3280@
5–7 60–80 6.0 70.0 113.6 ± 4.1 + 6.0 3.9 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaI2aGncqGGUaGlcqaIWaamaeaacqGHsislcqaIZaWmcqGGUaGlcqaI5aqoaaaaaa@3274@
5–7 80–100 6.0 90.0 127.6 ± 4.9 + 4.0 5.8 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaI0aancqGGUaGlcqaIWaamaeaacqGHsislcqaI1aqncqGGUaGlcqaI4aaoaaaaaa@3272@
5–7 100–120 6.0 110.0 144.0 ± 6.1 + 8.6 8.4 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaI4aaocqGGUaGlcqaI2aGnaeaacqGHsislcqaI4aaocqGGUaGlcqaI0aanaaaaaa@3284@
7–10 40–60 8.3 50.0 52.3 ± 1.9 + 1.7 2.7 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaIXaqmcqGGUaGlcqaI3aWnaeaacqGHsislcqaIYaGmcqGGUaGlcqaI3aWnaaaaaa@3272@
7–10 60–80 8.3 70.0 61.7 ± 2.4 + 2.1 2.9 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaIYaGmcqGGUaGlcqaIXaqmaeaacqGHsislcqaIYaGmcqGGUaGlcqaI5aqoaaaaaa@326C@
7–10 80–100 8.3 90.0 70.1 ± 2.9 + 2.0 3.3 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaIYaGmcqGGUaGlcqaIWaamaeaacqGHsislcqaIZaWmcqGGUaGlcqaIZaWmaaaaaa@3260@
7–10 100–120 8.3 110.0 75.2 ± 3.4 + 3.1 3.0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaIZaWmcqGGUaGlcqaIXaqmaeaacqGHsislcqaIZaWmcqGGUaGlcqaIWaamaaaaaa@325E@
7–10 120–140 8.3 130.0 87.5 ± 4.7 + 2.5 4.1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaIYaGmcqGGUaGlcqaI1aqnaeaacqGHsislcqaI0aancqGGUaGlcqaIXaqmaaaaaa@3268@
10–22 40–60 13.5 50.0 16.4 ± 0.6 + 0.6 0.7 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaIWaamcqGGUaGlcqaI2aGnaeaacqGHsislcqaIWaamcqGGUaGlcqaI3aWnaaaaaa@326A@
10–22 60–80 13.5 70.0 20.2 ± 0.8 + 0.8 0.7 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaIWaamcqGGUaGlcqaI4aaoaeaacqGHsislcqaIWaamcqGGUaGlcqaI3aWnaaaaaa@326E@
10–22 80–100 13.5 90.0 21.9 ± 0.9 + 0.7 0.9 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaIWaamcqGGUaGlcqaI3aWnaeaacqGHsislcqaIWaamcqGGUaGlcqaI5aqoaaaaaa@3270@
10–22 100–120 13.5 110.0 24.3 ± 1.1 + 0.9 1.2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaIWaamcqGGUaGlcqaI5aqoaeaacqGHsislcqaIXaqmcqGGUaGlcqaIYaGmaaaaaa@3268@
10–22 120–140 13.5 130.0 27.7 ± 1.4 + 0.9 1.0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaIWaamcqGGUaGlcqaI5aqoaeaacqGHsislcqaIXaqmcqGGUaGlcqaIWaamaaaaaa@3264@
10–22 140–160 13.5 150.0 30.7 ± 2.3 + 1.2 1.1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaIXaqmcqGGUaGlcqaIYaGmaeaacqGHsislcqaIXaqmcqGGUaGlcqaIXaqmaaaaaa@325A@
22–80 40–60 32.0 50.0 1.5 ± 0.2 + 0.2 0.1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaIWaamcqGGUaGlcqaIYaGmaeaacqGHsislcqaIWaamcqGGUaGlcqaIXaqmaaaaaa@3256@
22–80 60–80 32.0 70.0 2.3 ± 0.2 + 0.1 0.1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaIWaamcqGGUaGlcqaIXaqmaeaacqGHsislcqaIWaamcqGGUaGlcqaIXaqmaaaaaa@3254@
22–80 80–100 32.0 90.0 2.6 ± 0.3 + 0.3 0.2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaIWaamcqGGUaGlcqaIZaWmaeaacqGHsislcqaIWaamcqGGUaGlcqaIYaGmaaaaaa@325A@
22–80 100–120 32.0 110.0 3.6 ± 0.4 + 0.1 0.3 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaciaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaIWaamcqGGUaGlcqaIXaqmaeaacqGHsislcqaIWaamcqGGUaGlcqaIZaWmaaaaaa@325A@
22–80 120–140 32.0 130.0 4.0 ± 0.5 + 0.2 0.4 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaIWaamcqGGUaGlcqaIYaGmaeaacqGHsislcqaIWaamcqGGUaGlcqaI0aanaaaaaa@325C@
22–80 140–160 32.0 150.0 4.2 ± 0.6 + 0.2 0.4 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaIWaamcqGGUaGlcqaIYaGmaeaacqGHsislcqaIWaamcqGGUaGlcqaI0aanaaaaaa@325C@
22–80 160–180 32.0 170.0 3.6 ± 0.7 + 0.3 0.3 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8bkY=wiFfYlOipiY=Hhbbf9v8qqaqFr0xc9vqpe0di9q8qqpG0dHiVcFbIOFHK8Feei0lXdar=Jb9qqFfeaYRXxe9vr0=vr0=LqpWqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqaceaaaeaacqGHRaWkcqaIWaamcqGGUaGlcqaIZaWmaeaacqGHsislcqaIWaamcqGGUaGlcqaIZaWmaaaaaa@325C@