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Abstract

The cosmic microwave background (CMB) temperature autocorrelations, induced by a
magnetized adiabatic mode of curvature inhomogeneities, are computed with semi-
analytical methods. As suggested by the latest CMB data, a nearly scale-invariant spectrum
for the adiabatic mode is consistently assumed. In this situation, the effects of a fully
inhomogeneous magnetic field are scrutinized and constrained with particular attention to
harmonics which are relevant for the region of Doppler oscillations. Depending on the
parameters of the stochastic magnetic field a hump may replace the second peak of the
angular power spectrum. Detectable effects on the Doppler region are then expected only
if the magnetic power spectra have quasi-flat slopes and typical amplitude (smoothed over
a comoving scale of Mpc size and redshifted to the epoch of gravitational collapse of the
protogalaxy) exceeding 0.1 nG. If the magnetic energy spectra are bluer (i.e. steeper in
frequency) the allowed value of the smoothed amplitude becomes, comparatively, larger
(in the range of 20 nG). The implications of this investigation for the origin of large-scale
magnetic fields in the Universe are discussed. Connections with forthcoming experimental
observations of CMB temperature fluctuations are also suggested and partially explored.

1 Formulation of the problem
Since the Cosmic Microwave Background (CMB) is extremely isotropic in nearly all angular

scales, it is rather plausible to infer that the Universe was quite homogeneous (and isotropic) at

the moment when the ionization fraction dropped significantly and the photon mean free path

became, almost suddenly, comparable with the present Hubble radius.

The inhomogeneities present for length-scales larger than the Hubble radius right before

recombination are believed to be, ultimately, the seeds of structure formation and they can be

studied by looking at the temperature autocorrelations which are customarily illustrated in terms

of the angular power spectrum. The distinctive features of the angular power spectrum (like the
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Doppler peaks) can be phenomenologically reproduced by assuming the presence, before recom-

bination, of a primordial adiabatic 2mode arising in a spatially flat Universe [1-5]. Possible devi-

ations from this working hypothesis can also be bounded: they include, for instance, the

plausible presence of non-adiabatic modes (see [6-8] and references therein), or even features in

the power-spectrum that could be attributed either to the pre-inflationary stage of expansion or

to the effective modification of the dispersion relations (see [9-12] and references therein). For a

pedagogical introduction to the physics of CMB anisotropies see, for instance, Ref. [13]. In short

the purpose of the present paper is to show that CMB temperature autocorrelations may also be

a source of valuable informations on large-scale magnetic fields whose possible presence prior to

recombination sheds precious light on the origin of the largest magnetized structures we see

today in the sky such as galaxies, clusters of galaxies and even some supercluster.

In fact, spiral galaxies and rich clusters possess a large-scale magnetic field that ranges from

500 nG [14,15] (in the case of Abell clusters) to few G in the case of spiral galaxies [16]. Ellip-

tical galaxies have also magnetic fields in the G range but with correlation scales of the order of

10–100 pc (i.e. much smaller than in the spirals where typical correlation lengths are of the order

of 30 kpc, as in the case of the Milky Way). The existence of large-scale magnetic fields in super-

clusters, still debatable because of ambiguities in the determination of the column density of

electrons along the line of sight, would be rather intriguing. Recently plausible indications of the

existence of magnetized structures in Hercules and Perseus-Pisces superclusters have been

reported [17] (see also [18]): the typical correlation scales of the fields would be 0.5 Mpc and the

intensity 300 nG.

While there exist various ideas put forward throught the years, it is fair to say that the origin

of these (pretty large) fields is still matter of debate [15,19]. Even if they are, roughly, one mil-

lionth of a typical planetary magnetic field (such as the one of the earth) these fields are pretty

large for a cosmological standard since their energy density is comparable both with energy den-

sity of the CMB photons (i.e. ) and with the cosmic ray pressure. The very presence of large

scale magnetic fields in diffuse astrophysical plasmas and with large correlation scales (as large

of, at least, 30 kpc) seems to point towards a possible primordial origin [15]. At the same time,

the efficiency of dynamo amplification can be questioned in different ways so that, at the onset

of the gravitational collapse of the protogalaxy it seems rather plausible that only magnetic fields

with intensities3 BL > 10-14 nG may be, eventually, amplified at an observable level [20,21].

As emphasized many years ago by Harrison [22-24], this situation is a bit reminiscent of what

happened with the problem of justifying the presence of a flat spectrum of curvature perturba-

tions that could eventually seed the structure formation paradigm. Today a possibility along this

direction is provided by inflationary models in one of their various incarnations.

TCMB
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It seems therefore appropriate, especially in view of forthcoming satellite missions (like

PLANCK Explorer [25]), to discuss the effects of large-scale magnetic fields on CMB physics. In

fact, all along the next decade dramatic improvements in the quality and quantity of CMB data

can be expected. On the radio-astronomical side, the next generation of radio-telescopes such as

Square Kilometre Array (SKA) [26] might be able to provide us with unprecedented accuracy in

the full sky survey of Faraday Rotation measurements at frequencies that may be so large to be,

roughly, comparable with 4 (even if always smaller than) the lower frequency channel of the

PlANCK Explorer (i.e. about 30 GHz). The question before us today is, therefore, the following:

is CMB itself able to provide compelling bounds on the strength of large-scale magnetic fields

prior to hydrogen recombination? In fact, all the arguments connecting the present strength of

magnetic field to their primordial value (say before recombination) suffer undeniable ambigui-

ties. These ambiguities are related to the evolution of the Universe through the dark ages (i.e.

approximately, between photon decoupling and galaxy formation). So, even if it is very reason-

able to presume that during the stage of galaxy formation the magnetic flux and helicity are,

according to Alfvén theorems, approximately conserved, the strengths of the fields prior to grav-

itational collapse is unknown and it is only predictable within a specific model for the origin of

large-scale magnetic fields. In general terms, the magnetic fields produced in the early Universe

may have different features. They may be helical or not, they may have different spectral slopes

and different intensities. There are, however, aspects that are common to diverse mechanisms

like the stochastic nature of the produced field. Furthermore, since as we go back in time the con-

ductivity increases with the temperature, it can be expected that the flux freezing and the helicity

conservation are better and better verified as the Universe heats up say from few eV to few MeV.

Along the past decade some studies addressed the analysis of vector and tensor modes induced

by large-scale magnetic fields [28-31]. There have been also investigations within a covariant

approach to perturbation theory [32,33]. Only recently the analysis of the scalar modes has been

undertaken [34-38]. The set-up of the aforementioned analyses is provided by an effective one-

fluid description of the plasma which is essentially the curved space analog of magnetohydrody-

namics (MHD). This approach is motivated since the typical length-scales of the problem are

much larger of the Debye length. However, it should be borne in mind that the treatment of Far-

aday rotation is a typical two-fluid phenomenon. So if we would like to ask the question on how

the polarization plane of the CMB is rotated by the presence of a uniform magnetic field a two-

fluid description would be mandatory (see section 2 and references therein).

In the framework described in the previous paragraph, it has been shown that the magnetic

fields affect the scalar modes in a threefold way. In the first place the magnetic energy density and

pressure gravitate inducing a computable modification of the large-scale adiabatic solution.

Moreover, the anisotropic stress and the divergence of the Lorentz force affect the evolution of

the baryon-lepton fluid. Since, prior to decoupling, photons and baryons are tightly coupled the
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net effect will also be a modification of the temperature autocorrelations at angular scales smaller

than the ones relevant for the ordinary SW contribution (i.e. � > 30).

In the present paper, elaborating on the formalism developed in [34-36], a semi-analtytical

approach for the calculation of the temperature autocorrelations is proposed. Such a framework

allows the estimate of the angular power spectrum also for angular scales compatible with the

first Doppler peak. A gravitating magnetic field will be included from the very beginning and its

effects discussed both at large angular scales and small angular scales. The main theme of the

present paper can then be phrased by saying that large-scale magnetic fields affect the geometry

and the evolution of the (scalar) sources. We ought to compute how all these effects combine in

the final power spectra of the temperature autocorrelations. It should be remarked, incidentally,

that the evolution of the density contrasts of the various species enter directly the scalar problem

but neither the vector or the tensor modes are affected by their presence. As a consequence of this

occurrence the self-consistent inclusion of the large-scale magnetic fields in the calculation is

much more cumbersome than in the case of the tensor and vector modes.

The plan of the present paper will therefore be the following. In section 2 the typical scales of

the problem will be discussed. In section 3 the attention will be focused on the large-scale evo-

lution of the curvature perturbations with particular attention to the magnetized contribution,

i.e. the contribution associated with the gravitating magnetic fields. In section 4 the evolution at

smaller angular scales will be investigated accounting, in an approximate manner, for the finite

thickness effects of the last-scattering surface. In section 5 the estimates of the angular power

spectra of the temperature autocorrelations will be presented. Section 6 contains the concluding

remarks. Some of the relevant theoretical tools needed for the discussion of the problem have

been collected in the appendix with the sole aim to make the overall presentation more self-con-

tained. The material presented in the appendix collects the main equations whose solutions are

reported and discussed in section 3 and 4.

2 Typical scales of the problem
The analysis starts by defining all the relevant physical scales of the problem. These scales stem

directly from the evolution equations of the gravitational perturbations in the presence of a sto-

chastic magnetic field. The interested reader may also consult appendix A where some relevant

technical aspects are briefly summarized.

2.1 Equality and recombination

According to the present understanding of the Doppler oscillations the space-time geometry is

well described by a conformally flat line element of Friedmann-Robertson-Walker (FRW) type

ds a d dx2 2 2 2= −( )[ ], 
 (2.1)
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where t is the conformal time coordinate. In the present paper the general scheme will be to intro-

duce the magnetic fields in the standard lore where the space-time geometry is spatially flat. This

is the first important assumption which is supported by current experimental data including the

joined analysis of, at least, three sets of data stemming, respectively from large-scale structure,

from Type Ia supernovae and from the three year WMAP data (eventually combined with other

CMB experiments). For the interpretation of the data a specific model must also be adopted. The

framework of the present analysis will be the one provided by the CDM model. This is probably

the simplest case where the effects of magnetic fields can be included. Of course one may also ask

the same question within a different underlying model (such as the open CDM model or the

CDM model with sizable contribution from the tensor modes and so on and so forth). While

the calculational scheme will of course be a bit different, the main logic will remain the same.

More details on the typical values of cosmological parameters inferred in the framework of the

CDM model can be found at the beginning of section 5.

In the geometry given by Eq. (2.1) the scale factor for the radiation-matter transition can be

smoothly parametrized as

Concerning Eqs. (2.1) and (2.2) few comments are in order:

• the conformal time coordinate is rather useful for the treatment of the evolution of magnet-

ized curvature perturbations and is extensively employed in the appendix A;

• H0 is the present value of the Hubble constant and M0 is the present critical fraction in non-

relativistic matter, i.e. M0 = b0 + c0, given by the sum of the CDM component and of the bary-

onic component;

• in the notation of Eq. (2.2) the equality time (i.e. the time at which the radiation contribu-

tion equals the contribution of dusty matter) is easily determined to be eq = (  - 1)1, i.e.

roughly, eq � 1/2.

Equation (2.2) is a solution of the Friedmann-Lemaître equations whose specific form is

a a
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where  = a'/a and the prime will denote, throughout the paper, a derivation with respect to .

Equation (2.2) is indeed solution of Eqs. (2.3), (2.4) and (2.5) when the total energy density t

is given by the sum of the matter density M and of the radiation density R (similarly pt = pR + pM).

Often, for notational convenience, the rescaled time coordinate x = /1 will be used. Within

this x parametrization the critical fractions of radiation and dusty matter become

The redshift to equality is given, from Eq. (2.2), by

The redshift to recombination zrec is, approximately, between 1050 and 1150. From this hier-

archy of scales, i.e. zdec > zrec, it appears that recombination takes place when the Universe is

already dominated by matter. Furthermore, a decrease in the fraction of dusty matter delays the

onset of the matter dominated epoch.

If the recombination happens suddenly, the ionization fraction xe drops abruptly from 1 to

10-5. Prior to recombination the photons interact with protons and electrons via Thompson scat-

tering so that the relevant mean free path is, approximately,

where Yp � 0.24 is the abundance of 4He. Since mp = 0.938 GeV and me = 0.510 MeV, the mean

free path of the photons will be essentially determined by the electrons because the Thompson

cross section is smaller for protons than for electrons. Furthermore the protons and the electrons

are even more tightly coupled, among them, by Coulomb scattering whose rate is larger than the

Thompson rate of interaction. When the ionization fraction drops the photon mean free path

gets as large as 104 Mpc. For the purposes of this investigation it will be also important to take

 2− ′= +4 2 Ga p( t t ), (2.4)
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into account, at least approximately, the finite thickness of the last scattering surface. This can be

done by approximating the visibility function with a Gaussian profile [39-43](see also [44,45])

with finite width. We recall that the visibility function simply gives the probability that a photon

was last scattered between  and  + d (see section 4). The scale factor (2.2) can be used to express

the ratios of two typical time-scales in terms of the ratio between the corresponding redshifts. So,

for instance,

which implies that, for zrec and  = 0.134, rec = 1.011.

There is another typical scale that plays an important role in the discussion of the Doppler

oscillations. It is the baryon to photon ratio and it is defined as

In the treatment of the angular power spectrum at intermediate angular scales Rb(z) appears

ubiquitously either alone or in the expression of the sound speed of the photon-baryon system

(see appendix A for further details)

In the absence of a magnetized contribution, Rb(zrec) sets the height of the first Doppler peak

as it can be easily argued by solving the evolution of the photon density contrast in the WKB

approximation (see Eqs. (A.34) and (A.35)).

2.2 Plasma scales
The Debye scale and the plasma frequency of the electrons can be easily computed in terms of

the cosmological parameters introduced so far. The results are, respectively:
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By comparing Eqs. (2.8) and (2.12), T ̄  D both around equality and recombination. For typ-

ical scales comparable with the Hubble radius at recombination, therefore, the plasma will be,

to an excellent approximation, globally neutral, i.e.

where  denote the rescaled electric fields and where, by charge neutrality,

the electron density equals the proton density, i.e.

b is the ratio between the baryonic charge density and the photon density. When the ionization

fraction drops, the Debye scale is still the smallest length of the problem. From Eq. (2.13) the

plasma frequency for the electrons is, around recombination, in the MHz range. The plasma fre-

quency for the ions (essentially protons) will then be smaller (in the kHz range). Both these fre-

quencies are smaller than the maximum of the CMB emission (which is, today, around 300 GHz

and around 300 THz around recombination). Since the main focus of the present investigation

will be on frequencies  << pe, the electromagnetic propagation of disturbances can be safely

neglected and this implies, in terms of the rescaled electric and magnetic fields, that

where  and where

is the Ohmic current and c = a()  defined in terms of the rescaled conductivity. Since we are

in the situation where T << me, . By now using the Ohmic electric field inside

the remaining Maxwell equation, i.e.
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the magnetic diffusivity equation can be obtained

Equation (2.19) together with the previous equations introduced in the present subsection are

the starting point of the magnetohydrodynamical (MHD) description adopted in the present

paper. They hold for typical frequencies  << pe and for typical length scales much larger than

the Debye scale. In this approximation (see Eq. (2.16)) the Ohmic current is solenoidal, i.e.

.

As in the flat-space case, the MHD equations can be obtained from a two-fluid description by

combining the relevant equations and by using global variables. As a consequence of this deriva-

tion  will be the total current and  will be the bulk velocity of the plasma, i.e. the centre-of-

mass velocity of the electron-proton system [46,47]. It should be remembered that various phe-

nomena involving the possible existence of a primordial magnetic field at recombination should

not be treated within a single fluid approximation (as it will be done here) but rather within a

two-fluid (or even kinetic) description. An example along this direction is Faraday rotation of the

CMB polarization [48] or any other phenomenon where the electromagnetic branch of the

plasma spectrum is relevant, i.e.  > pe. In fact, the CMB is linearly polarized. So if a uniform

magnetic field is present at recombination the polarization plane of the CMB can be rotated.

From the appropriate dispersion relations (obtainable in the usual two-fluid description) the Far-

aday rotation rate can be computed bearing in mind that the Larmor frequency of electrons and

ions at recombination, i.e.

are both smaller than pe. In Eq. (2.20) BL(rec) is the smoothed magnetic field strength at recom-

bination.

It is the moment to spell out clearly two concepts that are central to the discussion of the evo-

lution of large-scale magnetic fields in a FRW Universe with line element (2.1):

• the concept of comoving and physical magnetic fields;

• the concept of stochastic magnetic field.

∂
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The comoving magnetic field  is related to the physical magnetic field  as

. We will choose as the reference time the epoch of gravitational collapse of

the protogalaxy. At this time the comoving and physical field coincide. So, for instance, a (phys-

ical) magnetic field of nG strength at the onset of gravitational collapse will be roughly of the

order of the mG (i.e. 10-3 G) at the epoch of recombination. This conclusion stems directly from

the fact that the physical magnetic field scales with a-2(), i.e. with z2 where z, as usual is the red-

shift. This implies, in turn, that  (i.e. the comoving field) is roughly constant (in time) if the

plasma does not have sizable kinetic helicity5(i.e. ) (see, for instance, [15,20,21]).

In this situation Eq. (2.19) dictates that  is constant for typical wave-numbers k <k (i.e. for suf-

ficiently large comoving length-scales) where k sets the magnetic diffusivity scale whose value,

at recombination, is

Equation (2.21) can be compared with the estimate of the diffusive scale associated with Silk

damping:

Hence, for the typical value of the matter fraction appearing in Eq. (2.21), rec � 1 and, con-

sequently k ̄  kD. While finite conductivity effects are rather efficient in washing out the magnetic

fields for large wave-numbers, the thermal diffusivity effects (related to shear viscosity and, ulti-

mately, to Silk damping) affect typical wave-numbers that are much smaller than the ones

affected by conductivity.

Under the conditions of MHD, two (approximate) conservations laws may be derived, namely

the magnetic flux conservation

and the magnetic helicity conservation
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In Eq. (2.23)  is an arbitrary closed surface that moves with the plasma. In Eq. (2.24)  is

the vector potential. According to Eq. (2.23), in MHD the magnetic field has to be always sole-

noidal (i.e. ). Thus, the magnetic flux conservation implies that, in the ideal MHD limit

(i.e. c  ) the magnetic flux lines, closed because of the transverse nature of the field, evolve

always glued together with the plasma element. In this approximation, as far as the magnetic field

evolution is concerned, the plasma is a collection of (closed) flux tubes. The theorem of flux con-

servation states then that the energetical properties of large-scale magnetic fields are conserved

throughout the plasma evolution.

While the flux conservation concerns the energetic properties of the magnetic flux lines, the

magnetic helicity, i.e. Eq. (2.24), concerns chiefly the topological properties of the magnetic flux

lines. In the simplest situation, the magnetic flux lines will be closed loops evolving independ-

ently in the plasma and the helicity will vanish. There could be, however, more complicated top-

ological situations [51] where a single magnetic loop is twisted (like some kind of Möbius stripe)

or the case where the magnetic loops are connected like the rings of a chain: now the non-van-

ishing magnetic helicity measures, essentially, the number of links and twists in the magnetic flux

lines [47]. Furthermore, in the superconducting limit, the helicity will not change throughout the

time evolution. The conservation of the magnetic flux and of the magnetic helicity is a conse-

quence of the fact that, in ideal MHD, the Ohmic electric field is always orthogonal both to the

bulk velocity field and to the magnetic field. In the resistive MHD approximation this conclusion

may not apply. The quantity at the right-hand-side of Eq. (2.24), i.e.  is called magnetic

gyrotropy and it is a gauge-invariant measure of the number of contact points in the magnetic

flux lines. As we shall see in a moment, the only stochastic fields contributing to the scalar fluc-

tuations of the goemetry are the ones for which the magnetic gyrotropy vanishes.

Nearly all mechanisms able to generate large scale magnetic fields imply the existence of a sto-

chastic background of magnetic disturbances [15] that could be written, in Fourier space, as 6

where

d
d

d xA B d x B B
V V 

3 31
4

    
⋅( ) = − ⋅ ∇ ×∫ ∫c

 . (2.24)


A

 
∇ ⋅ =B 0

  
B B⋅ ∇ ×

B k B p P k k pi j ij( , ) ( , ) ( ) ( ),( )
   
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From Eq. (2.26) the magnetic field configuration of Eq. (2.25) depends on the amplitude of

the field  and on the spectral index m.

It is often useful, in practical estimates, to regularize the two-point function by using an appro-

priate "windowing". Two popular windows are, respectively, the Gaussian and the top-hat func-

tions, i.e.

For instance, the regularized magnetic energy density with Gaussian filter can be obtained

from the previous expressions by shifting . The result is

where F(a, b, x) 1 F1(a, b, x) is the confluent hypergeometric function [52,53]. Notice that the

integral appearing in the trace converges for m > -3. The amplitude of the magnetic power spec-

trum  can be traded for  where  is by definition the regularized two-point function eval-

uated at coincident spatial points, i.e.

Combining Eq. (2.28) with Eq. (2.29) we have that  becomes

where kL = 2/L. The two main parameters that will therefore characterize the magnetic back-

ground will be the smoothed amplitude BL and the spectral slope. For reasons related to the way

power spectra are assigned for curvature perturbations, it will be practical to define the magnetic

spectral index as  = m + 3 (see Eqs. (3.40)-(3.41) and comments therein).
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In the case of the configuration (2.25) the magnetic gyrotropy is vanishing, i.e. .

There are situations where magnetic fields are produced in a state with non-vanishing gyrotropy

(or helicity) (see for instance [54] and references therein). In the latter case, the two point func-

tion can be written in the same form given in Eq. (2.25)

but where now

From Eq. (2.32) we can appreciate that, on top of the parity-invariant contribution (already

defined in Eqs. (2.25) and (2.26)), there is a second term proportional to the Levi-Civita ij� . In

Fourier space, the introduction of gyrotropic configurations implies also the presence of a second

function of the momentum (k). In the case of scalar fluctuations of the geometry this second

power spectrum will not give any contribution (but it does contribute to the vector modes of the

geometry as well as in the case of the tensor modes).

The correlators that contribute to the evolution of the scalar fluctuations of the geometry will

be essentially the ones of magnetic energy density and pressure (i.e. /(8) and /(24)) and

the one related to the divergence of the MHD Lorentz force (i.e. ) which appears as

source term in the evolution equation of the divergence of the peculiar velocity of the baryons

(see Eqs. (A.23) and (A.25) of the appendix A). Since in MHD  the divergence of the

Lorentz force will be proportional to . The magnetic anisotropic stress  does

also contribute to the scalar problem but it can be related, through simple vector identities, to

the magnetic energy density and to the divergence of the Lorentz force (see Eqs. (A.28) and

(A.29)). To specify the effect of the stochastic background of magnetic fields on the scalar modes

of the geometry we shall therefore need the correlation functions of two dimensionless quantities

denoted, in what follows, by B and B, i.e.

where  is the energy density of the photons. Since B and B are both quadratic in the magnetic

field intensity, their corresponding two-point functions will be quartic in the magnetic field
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intensities. Consequently B and B will have Fourier transforms that are defined as convolutions

of the original magnetic fields and, more precisely:

where

having defined, for notational convenience, .

3 Large-scale solutions
After equality but before recombination the fluctuations of the geometry evolve coupled with the

fluctuations of the plasma. The plasma contains four species: photons, neutrinos (that will be

taken to be effectively massless at recombination), baryons and cold dark matter (CDM) parti-

cles. The evolution equations go under the name of Einstein-Boltzmann system since they are

formed by the perturbed Einstein equations and by the evolution equations of the brightness per-

turbations. In the case of temperature autocorrelations, the relevant Boltzmann hierarchy will be

the one associate with the I stokes parameter giving the intensity of the Thompson scattered radi-

ation field. Furthermore, since neutrinos are collisionless after 1 MeV, the Boltzmann hierarchy

for neutrinos has also to be consistently included. In practice, however, the lowest multipoles

(i.e. the density contrast, the velocity and the anisotropic stress) will be the most important ones

for the problem of setting the pre-recombination initial conditions.

Since stochastic magnetic fields are present prior to recombination, the Einstein-Boltzmann

system has to be appropriately modified. This system has been already derived in the literature

(see Ref. [34,35]) but since it will be heavily used in the present and in the following sections the

main equations have been collected and discussed in appendix A. It is also appropriate to remark,

on a more technical ground, that the treatment of the curvature perturbations demands the anal-

ysis of quantities that are invariant under infinitesimal coordinate transformations (or, for short,

Ω = = Ω =∫ − ⋅
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gauge invariant). The strategy adopted in the appendix has been to pick up a specific gauge (i.e.

the conformally Newtonian gauge) and to derive, in this gauge, the relevant evolution equations

for the appropriate gauge-invariant quantities such as the density contrast on uniform density

hypersurfaces (denoted, in what follows, by ) and the curvature perturbations on comoving

orthogonal hypersurfaces (denoted, in what follows, by ). Defining as k the comoving wave-

number of the fluctuations, the magnetized Einstein-Boltzmann system can be discussed in three

complementary regimes:

• the wavelengths that are larger than the Hubble radius at recombination, i.e. krec < 1;

• the wavelengths that crossed the Hubble radius before recombination but that were still

larger than the Hubble radius at equality, i.e. keq < 1;

• the wavelengths that crossed the Hubble radius prior to equality and that are, consequently,

inside the Hubble radius already at equality (i.e. keq > 1).

The wavelengths that are larger than the Hubble radius at recombination determine the large-

scale features of temperature autocorrelations and, in particular, the so-called Sachs-Wolfe pla-

teau. The wavelengths that crossed the Hubble radius around rec determine the features of the

temperature autocorrelations in the region of the Doppler oscillations.

The initial conditions of the Einstein-Boltzmann system are set in the regime when the rele-

vant wavelengths are larger than the Hubble radius before equality (i.e. deep in the radiation

epoch). The standard unknown is represented, in this context, by the primordial spectrum of the

metric fluctuations whose amplitude and slope are two essential parameters of the CDM

model. To this unknown we shall also add the possible presence of a stochastically distributed

magnetized background. In the conventional case, where magnetic fields are not contemplated,

the system of metric fluctuations admits various (physically different) solutions that are custom-

arily classified in adiabatic and non-adiabatic modes (see, for instance, [6,7] and also [13]). For

the adiabatic modes the fluctuations of the specific entropy vanish at large scales. Conversely, for

non-adiabatic (also sometimes named isocurvature) solutions the fluctuations of the specific

entropy do not vanish. The WMAP 3-year data [1-3] suggest that the temperature autocorrela-

tions are well fitted by assuming a primordial adiabatic mode of curvature perturbations with

nearly scale-invariant power spectrum. Therefore, the idea will be now to assume the presence of

an adiabatic mode of curvature perturbations and to scrutinize the effects of fully inhomogene-

ous magnetic fields. It should be again stressed that this is the minimal assumption compatible

with the standard CDM paradigm. As it will be briefly discussed later on, all the non-adiabatic

solutions in the pre-equality regime can be generalized to include a magnetized background [35].

However, for making the discussion both more cogent and simpler, the attention will be focussed


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on the physical system with the fewer number of extra-parameters, i.e. the case of a magnetized

adiabatic mode.

3.1 Curvature perturbations

Consider the large angular scales that were outside the horizon at recombination. While smaller

angular scales (compatible with the first Doppler peak) necessarily demand the inclusion of

finite thickness effects of the last scattering surface, the largest angular scales (corresponding to

harmonics �  25) can be safely treated in the approximation that the visibility function is a Dirac

delta function centered around rec. Moreover, for the modes satisfying the condition krec < 1 the

radiation-matter transition takes place when the relevant modes have wavelengths still larger

than the Hubble radius.

It is practical, for the present purposes, to think the matter-radiation fluid as a unique physical

entity with time-dependent barotropic index and time-dependent sound speed:

where  = a/aeq. According to Eq. (3.1), when a ¯ aeq both  and wt go to zero (as appropriate

when matter dominates) while in the opposite limit (i.e.  << 1)  � wt  1/3 which is the

usual result of the radiation epoch. Since recombination takes place after equality it will be cru-

cial, for the present purposes, to determine the perturbations of the spatial curvature at this

moment. The presence of fully inhomogeneous magnetic fields affects the evolution of the cur-

vature perturbations across the radiation-matter transition. This issue has been addressed in [34]

by following, outside the Hubble radius, the evolution of the gauge-invariant density contrast on

uniform density hypersurfaces (customarily denoted by ):

where  is related to the fluctuation of the spatial component of the metric (i.e. sgij = 2a2ij in

the conformally Newtonian gauge) and

are, respectively, the total density fluctuation of the fluid sources (i.e. photons, neutrinos, CDM

and baryons) and the density fluctuations induced by a fully inhomogeneous magnetic field. The

w
p

c
p

t st
t
t

t
t

( )
( )

,
( )

,
   

= =
+

=
′
′
=

+
1

3 1
4

3 4 3
2 (3.1)

c st
2

c st
2

 
 


= − + +
′

( )
.t B

t
(3.2)

     


 t c b B= + + + =,
( )

,
B x

a

2

8 4


(3.3)
Page 16 of 53
(page number not for citation purposes)



PMC Physics A 2007, 1:5 http://www.physmathcentral.com/1754-0410/1/5
gauge-invariant density contrast on uniform curvature hypersurfaces is related, via the Hamilto-

nian constraint (see Eq. (A.5)), to the curvature perturbations on comoving orthogonal hypers-

ufaces customarily denoted by . Since both  and  are gauge-invariant, their mutual relation

can be worked out in any gauge and, in particular, in the conformally Newtonian gauge where

 can be expressed as [13]

where  is defined as the spatial part of the perturbed metric in the conformally Newtonian

gauge, i.e. sg00 = 2a2. In the same gauge the Hamiltonian constraint reads (see also appendix A

and, in particular, Eq. (A.5))

Using Eq. (2.5) inside Eq. (3.2) and inserting the obtained equation into Eq. (3.5) we obtain,

through Eq. (3.4) the following relation

implying that 7 for k << 1,  (k) ~  (k) +  (|k|2). From the covariant conservation equation

we can easily deduce the evolution for :

In the case of a CDM-radiation entropy mode we have that

where * is the relative fulctuation of the specific entropy  = T3/nCDM defined in terms of the

temperature T and in terms of the CDM concentration nCDM.

3.2 Magnetized adiabatic mode

The possible presence of entropic contributions will be neglected since the attention will now be

focused on the simplest situation which implies solely the presence of an adiabatic mode. It is

however useful to keep, for a moment, the dependence of the curvature perturbations also upon
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* since the present analysis can be easily extended, with some algebra, to the case of magnetized

non-adiabatic modes. Recalling now the expression of the total sound speed  given in Eq.

(3.1) and noticing that

Eq. (3.7) can be recast in the following useful form 8

whose solution is

where *(k) is the constant value of curvature perturbations implied by the presence of the adia-

batic mode; B(k) has been introduced in Eq. (2.36). The dependence upon the Fourier mode k

has been explicitly written to remind that *(k) is constant in time but not in space. In the two

relevant physical limits, i.e. well before and well after equality, Eq. (3.11) implies, respectively,

When  =  we can also obtain the evolution of  for the large scales

Equation (3.14) can be easily solved by noticing that it can be rewritten as

implying that
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where

By using the obvious change of variables y =  + 1 both integrals can be calculated with ele-

mentary methods with the result that

Inserting Eq. (3.18) into Eq. (3.16) the explicit result for  can be written as:

Equation (3.19) can be evaluated in the two limits mentioned above, i.e., respectively, well

after and well before equality:

Notice that *(k) appears also in the correction which goes as  = a/aeq. In this derivation the

role of the anisotropic stress has been neglected. As full numerical solutions of the problem (in

the tight coupling approximation) shows [35,36] that the magnetic anisotropic stress can be

neglected close to recombination but it is certainly relevant deep in the radiation-dominated

regime. To address this issue let us solve directly the system provided by the evolution equations

of the longitudinal fluctuations of the geometry (i.e. Eqs. (A.4), (A.5) and (A.6)-(A.9))coupled

with the evolution equations of the matter sources which are reported in appendix A. The evolu-

tion of the background will be the one dictated by Eq. (2.2) and by Eq. (2.6). The solution of the
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Hamiltonian constraint (A.5) and of the evolution equations for various density contrasts (i.e.

, , b and c) can be written, in the limit x = /1 << 1 as

The Hamiltonian constraint (A.5) implies, always for x << 1, that the following relation must

hold among the various constants:

Going on along the same theme we have that Eq. (A.9) is automatically satisfied by Eq. (3.21)

in the small-x limit. The solution of Eq. (A.4) can be obtained with similar methods and always

well before equality:

where  (k, ) is the neutrino anisotropic stress and B(k, ) has been already introduced in Eq.

(2.37); in Eq. (3.23)  = k1 and it is the wave-number rescaled through 1 which appears in Eq.

(2.2). Notice that, as B(k) also B(k) is approximately constant in time when the flux-freezing

condition is verified. To derive Eq. (3.23) we take the (i  j) component of the perturbed Einstein

equation, i.e. Eq. (A.4) of the Appendix. From this equation we can write that:

where, as usual, x = /1 and where, according to Eqs. (2.2) and (2.6)

The solution for  and  is parametrized as

(k, ) = *(k) + 1(k)x, (k, ) = * + 1(k)x, (3.26)
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where the constants * (k) and 1(k) will be determined by consistency with the other equations.

Now we are interested in the solution valid for x << 1. So we have to expand all the terms of Eq.

(3.24) for x << 1. Taking into account the exact form of 2R, Eq. (3.24) becomes

Let us now expand the right hand side of Eq. (3.27). We will have that, for x < 1

Rearranging the terms of Eq. (3.28) and keeping the terms (x3), Eq. (3.23) can be immedi-

ately reproduced (recall, as previously posited, that  = k1).

Using Eq. (3.21) into the evolution equations of the peculiar velocities (i.e. Eqs. (A.13),

(A.18) and (A.25)), the explicit expressions for c,  and b can be easily obtained. In particular,

for c and  we have:

Finally, from Eq. (A.25), the photon-baryon peculiar velocity field is determined to be:

By solving Eq. (A.19) (bearing in mind Eqs. (3.22) and (3.30)) the following relations can be

obtained
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allowing to determine, in conjunction with Eq. (3.22), the explicit form of 1(k) and of 1(k):

If R = B = 0 we have that

and this result coincides precisely with the result already obtained in Eq. (3.13). In fact, recalling

that (x) = x2 + 2x, we have that, in the small-x region (k, ) � -(2/3) *(k) + (x/12) *(k). But

recalling now that, in the limit R  0 and B  0, *(k) = - (3/2)* (k), Eq. (3.34) is recovered.

The obtained large-scale solutions will be important both for the explicit evaluation of the Sachs-

Wolfe plateau as well as for the normalization of the solution at smaller k that will be discussed

in the forthcoming section.

It is useful to add that, in the limit (RB + R)  0 and R  0 the result reported in

Eq.(3.11) is also recovered. Infact, in this limit, * = * and  = * + ().

3.3 Estimate of the ordinary Sachs-Wolfe contribution

The ordinary and integrated Sachs-Wolfe contributions can now be computed. Recalling Eq.

(A.45) the large-scale limit of the brightness perturbation of the radiation field is (see also Eqs.

(A.40) and (A.45) of the appendix A)

As in the standard case, the ISW effect mimics the ordinary SW effect and it actually cancels

partially the SW contribution at large angular scales. Notice that, in order to derive the explicit

form of the ordinary SW it is practical to observe that, for wavelengths larger than the Hubble

radius at recombination ( - 4)' � 0. This observation implies that, clearly,
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 where the superscripts f (for final) and i (for initial) indicate that the val-

ues of the corresponding quantities are taken, respectively, well after and well before equality.

The large angular scale expression of the temperature autocorrelations are defined as

To evaluate Eq. (3.37) in explicit terms we have to mention the conventions for the curvature

and for the magnetic power spectra. The correlators of *(k), B(k) and B(k) are defined, respec-

tively, as

In the case of the curvature perturbations we will have that

where kp denotes the pivot scale at which the spectrum of curvature fluctuations is computed and

 is, by definition, the amplitude of the spectrum at the pivot scale. In similar terms the mag-

netized contributions can be written as

where kL (defined in Eq. (2.30)) denotes, in some sense, the magnetic pivot scale. The spectral

index of the magnetic correlator defined in Eq. (2.32) is related to  as m + 3 = . Notice also that

in defining the correlators of B and of B the same conventions used for the curvature perturba-

tions have been adopted. These conventions imply that a factor k-3appears at the right hand side

of the first relation of Eq. (3.39).

Since the spectrum of the magnetic energy density implies the calculation of a convolution kL

is also related to the smoothing scale of the magnetic energy density (see, for instance, [35]). In
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Eqs. (3.40) and (3.41) the functions () and () as well as the smoothed amplitude BL are

defined as

From Eq. (3.43), recalling that TCMB = 2.725K and that , we can also write,

in more explicit terms:

It should finally be appreciated that the power spectra of the magnetic energy density and of

the anisotropic stress are proportional since we focus our attention to magnetic spectral slopes 

< 1 which are the most relevant at large length-scales 9. In principle, the present analysis can be

also extended to the case when the magnetic power spectra are very steep in k (i.e.  > 1). In the

latter case the power spectra are often said to be violet and they are severely constrained by ther-

mal diffusivity effects [30].

By performing the integration over the comoving wave-number that appears in Eq. (3.37) the

wanted result can be expressed as 10
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In Eq. (3.48) br is the correlation angle that has been included to keep the expressions as gen-

eral as possible. In what follows the main focus will however be on the case where the adiabatic

mode of curvature perturbations is not correlated with the magnetized contribution (i.e. br = /

2). The various pivot scales appearing in Eqs. (3.46), (3.47) and (3.48) will now be defined:

Let us now consider some simplified limits. The first one is to posit11 n = 1 and  < 1. We will

have that the functions  will be simplified. They become:

We now can enforce the normalization at large scales by assuming a dominant adiabatic

mode. A preliminary manipulation is the following. We can write the previous expression as

We can now expand the relevant terms in powers of . We do get
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where

We can then compute the various pieces. They will set the scale of the numerical results. In

particular, it is easy to argue that the presence of the cross correlation enhances the results at

smaller scales. As a final comment it is relevant to remark that the large-scale solutions are not

only important per se but they will be used to deduce the appropriate normalization for the

results arising at smaller angular scales.

4 Intermediate scales
As discussed in the previous section the attention will now be focussed on the situation of a dom-

inant adiabatic mode. This is just because we want to delicately extend the CDM paradigm and

make contact with the standard scenario. In fact, it should be clear that our attempts are not alter-

native to the standard lore but, more modestly, complementary.

From Eqs. (A.32), (A.33) and (A.34) the photon density contrast can be determined under the

assumption that the entropic contribution is absent. Thus, if only the magnetic fields and the adi-

abatic mode are present, Eqs. (A.34), (A.35) and (A.36) lead to the following solution

where (k, ) is assumed to be slowly varying in time and where, recalling Eq. (2.8)

The constant A1(k) can be determined by matching the solution to the large-scale (i.e. super-

Hubble) behaviour of the fluctuations, i.e.

 
 ( ) ( ) ( ) ( )

+ = + Ω
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝
⎜

⎞

⎠

1
2 25

1 1

2

16
2 0


 


C

R k
k

SW
BL L


   ⎟⎟ − Ω

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣

⎢
⎢
⎢

2

2 2
0 0








  ( ) ( )

R k
k

k
kBL

L p

⎤⎤

⎦

⎥
⎥
⎥
,

(3.54)

 



1 1 2
1 1

1
2 2 2 2

2
1
2 1

( ) ln
( )
( )

( ),

( ) (


 






= + + +
+

− +
′⎛

⎝
⎜

⎞

⎠
⎟ +

=

Γ
Γ

 

Q ).

(3.55)

      ( , ) ( , ) [ ( ) ( )] ( )cos[ ( , )]k
c

k k k c A k k e=− + −Ω +
−

4

3 2
4 1

sb
B B sb

kk

k

2

2
D ,

(4.1)

       ( , ) ( ) , ( ) ( ) .k k c d
k

c d= ∫ = ∫sb0
1
2

2
5

2rec

D
T sb (4.2)
Page 26 of 53
(page number not for citation purposes)



PMC Physics A 2007, 1:5 http://www.physmathcentral.com/1754-0410/1/5
where m denotes the value of (k) after equality and for k < 1. From the solution of the evolu-

tion equation of (k, ) also b(k, ) can be easily obtained (see, in particular, Eq. (A.24) of

appendix A). The final result can be expressed, for the present purposes, as12

The functions (k, ) and (k, ) are directly related to the curvature perturbations and

can be determined by interpolating the large-scale behaviour with the small-scale solutions. In

the present case they can be written as

In Eqs. (4.6) and (4.7) the variable w = k0/� has been introduced. This way of writing may

seem, at the moment, obscure. However, the variable w will appear as integration variable in the

angular power spectrum, so it is practical, as early as possible, to express the integrands directly

in terms of w. Finally the functions B(k, ) and B(k, ) are determined in similar terms and

they can be written as
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It should be stressed that Eqs. (4.6) and (4.7) can be obtained from the standard form of the

CDM transfer function in the case when b0 << M0 and for a spatially flat Universe. Under

these assumptions (which are the ones clearly spelled out at the beginning of the present paper)

the transfer function (conventionally denoted by T(q)) will depend solely upon q = k/(14keq).

When keq <k < 11keq(which is the interesting range if we want to study the first two Doppler

peaks), then the full transfer function T(q) given in [57] can be approximated by T(k) � (1/4) ln

[14keq/k], which leads to Eq. (4.6) once we recall the definition of w and once we normalize, at

large-scales, the SW contribution to the adiabatic initial conditions in the presence of the mag-

netized contribution derived before in the long wavelength limit.

The functions (k) and B(k) encode the informations related to the diffusivity wave-

number:

As introduced before kD is the thermal diffusivity scale (i.e. shear viscosity). The quantity

named kB is the smallest momentum between the ones defined by magnetic diffusivity, by Alfvén

diffusivity and by thermal diffusivity. The magnetic diffusivity has been already introduced in Eq.

(2.21) and it arises because of the finite value of the conductivity. The Alfvén diffusivity arises

when the magnetic field supports Alfvén waves that are subsequently damped for typical length-

scales that are a bit smaller than the Silk damping scale (see [30] and, in particular, [55]). Now,

if the magnetic field is fully inhomogeneous (as in the present case) the dominant source of dif-

fusivity is represented by the Silk length scale since it is larger than the magnetic diffusivity length

and than the Alfvén diffusivity length [30]. For the purpose of simplifying the integrals to be eval-

uated numerically it is practical to introduce the following rescaled quantities:

after some algebra the angular power spectrum can be written as the sum of four integrals, i.e.

where:
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where j�(y) denote the spherical Bessel functions of the first kind [52,53] which are related to the

ordinary Bessel functions of the first kind as . The various functions appearing

in Eqs. (4.13), (4.14), (4.15) and (4.16) are:

where �S and �A denote respectively the typical Silk multipole and the typical multipole associ-

ated with Alfvén diffusivity. They will be defined explicitly in a moment. In Eqs. (4.15) and

(4.16) the oscillatory terms arising, originally, in the full expression of the angular power spec-

trum have been simplified. The two oscillatory contributions in Eqs. (4.15) and (4.16) go, respec-

tively, as cos (2�w) and as cos (�w). The definition of  can be easily deduced from the original

parametrization of the oscillatory contribution in Eqs. (4.1) and (4.2). In fact we can write (k,
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rec) = (rec) �w. Recalling that w = k0/�, and defining, for notational convenience,    (rec),

the following expression for  can be easily obtained

In Eq. (4.21) the first equality is simply the definition of  while the second equality can be

deduced by inserting in the definition the explicit expression of the scale factor of Eq. (2.2). By

doing so the constant 1 is just Rbzrec/zeq. The expression of  can be made even more explicit by

performing the integral appearing in Eq. (4.21):

It is now practical to recall that the ratio between 1 and 0 depends upon the critical fraction

of the dark energy. So the scale factor (2.2) must be complemented, at late times, by the contri-

bution of the dark energy. This standard calculation leads to the following estimate for a spatially

flat Universe

where 0 is the present critical fraction of dark energy (parametrized in terms of a cosmological

constant in a CDM framework) and where 2 = 0.0858. Inserting Eq. (2.9) into Eq. (4.23) and

recalling the explicit expression of 1 we will have finally

At this point the spherical Bessel functions appearing in the above expressions can be evalu-

ated in the limit of large � with the result that the above expressions can be made more explicit.

In particular, focussing the attention on j�(�w), we have that [52,53]

Note that the expansion (4.25) has been used consistently by other authors (see, in particular,

[44,45] and also [39,41-43]). The result expressed by Eq. (4.25) allows to write the integrals of

Eqs. (4.13), (4.14), (4.15) and (4.16) as
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where

where

Concerning Eqs. (4.27)–(4.30) and (4.31)–(4.34) the following comments are in order:

• the lower limit of integration over w is 1 in Eqs. (4.27)–(4.30) since the asymptotic expan-

sion of Bessel functions implies that k0  �, i.e. w  1;
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• the obtained expressions will be valid for the angular power spectrum will be applicable for

sufficiently large �; in practice, as we shall see the obtained results are in good agreement with

the data in the Doppler region;

• the function  leads to a rapidly oscillating argument whose

effect will be to slow down the convergence of the numerical integration; it is practical, for the

present purposes, to replace cos2 [ (w, �)] by its average (i.e. 1/2).

In the integrals (4.31), (4.32), (4.33) and (4.34) the scale �t stems from the finite thickness of

the last scattering surface and it is defined as

Furthermore, within the present approximations,

To simplify further the obtained expressions we can also change variable in some of the inte-

grals. Consider, as an example, the integrals appearing in the expression of C1(�) (see Eq. (4.27)).

Changing the variable of integration as w = y2 + 1 we will have that

where, in explicit terms and after the change of variables,

and
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In Eq. (4.39) the explicit dependence of the functions LB(�, y) and L (�, y) upon y can be sim-

ply deduced from the analog expressions in terms of w :

With similar manipulations it is possible to transform also all the other integrands appearing

in Eqs. (4.28), (4.29) and (4.30).

5 Calculation of the temperature autocorrelations
So far the necessary ingredients for the estimate of the magnetized temperature autocorrelations

have been sorted out. In particular the angular power spectrum has been computed semi-analyt-

ically in the two relevant regions, i.e. the Sachs-Wolfe regime (corresponding to large angular

scales and �  30) and the Doppler region, i.e. � > 100. Furthermore, for the nature of the approx-

imations made we do not expect the greatest accuracy of the algorithm in the intermediate region

(i.e. 30 < � < 100). Indeed, it was recognized already in the absence of magnetic fields that it is

somehow necessary to smooth the joining of the two regimes by assuming an interpolating form

of the metric fluctuations that depends upon two fitting parameters [42,43]. We prefer here to

stress that this method is inaccurate in the matching regime since the spherical Bessel functions

have been approximated for large �. Therefore, the comparison with experimental data should

be preferentially conducted, for the present purposes, in the Doppler region. The strategy

adopted in the present section is, therefore, the following:

• by taking a concordance model as a starting point, the shape and amplitude of the Doppler

oscillations will be analyzed when the amplitude and spectral slope of the stochastic field are

allowed to vary;

• constraints can then be derived from the temperature autocorrelations induced by the simul-

taneous presence of the standard adiabatic mode and of the stochastic magnetic field.

Before plunging into the discussion, it is appropriate to comment on the choice of the cosmo-

logical parameters that will be employed throughout this section. The WMAP 3-year [1] data have

been combined, so far, with various sets of data. These data sets include the 2dF Galaxy Redshift

Survey [58], the combination of Boomerang and ACBAR data [59,60], the combination of CBI

and VSA data [61,62]. Furthermore the WMAP 3-year data can be also combined with the Hubble

Space Telescope Key Project (HSTKP) data [63] as well as with the Sloan Digital Sky Survey
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(SDSS) [64,65] data. Finally, the WMAP 3-year data can be also usefully combined with the weak

lensing data [66,67] and with the observations of type Ia supernovae 13(SNIa). Each of the data

sets mentioned in the previous paragraph can be analyzed within different frameworks. The min-

imal CDM model with no cut-off in the primordial spectrum of the adiabatic mode and with

vanishing contribution of tensor modes is the simplest concordance framework. This is the one

that has been adopted in this paper. Diverse completions of this minimal model are possible:

they include the addition of the tensor modes, a sharp cut-off in the spectrum and so on and so

forth. One of the conclusions of the present study is that the observational cosmologists may also

want to include, in their analyses, the possibility of pre-recombination large-scale magnetic

fields.

All these sets of data (combined with different theoretical models) lead necessarily to slightly

different determinations of the relevant cosmological parameters To have an idea of the range of

variations of the parameters the following examples are useful14:

• the WMAP 3-year data alone [1] (in a CDM framework) seem to favour a slightly smaller

value  = 0.127;

• if the WMAP 3-year data are combined with the "gold" sample of SNIa [69] (see also [70])

the favoured value is  is of the order of 0.134; if the WMAP 3-year data are combined with

all the data sets  = 0.1324.

• similarly, if the WMAP data alone are considered, the preferred value of  is 0.02229

while this value decreases to 0.02186 if the WMAP data are combined with all the other data sets.

The aforementioned list of statements refers to the case of a pure CDM model. If, for

instance, tensors are included, then the WMAP 3-year data combined with CBI and VSA increase

a bit the value of  which becomes, in this case closer to 0.023. While in the future it might

be interesting to include pre-recombination magnetic fields also in non-minimal CDM scenar-

ios, here the logic will be to take a best fit model to the WMAP data alone, compare it with the

numerical scheme proposed in this paper, and, consequently, assess the accuracy of the semi-

analytical method. Once this step will be concluded the effects stemming from the presence of

the magnetic fields will be carefully analyzed. Consider, therefore, the case when the magnetic

field vanishes (i.e. BL = 0) in a CDM model with no tensors. In Fig. 1 the contribution of each

of the integrals appearing in Eq. (4.26) is illustrated. The analytical form of these integrals has

been derived in Eqs. (4.27), (4.28), (4.29) and (4.30). In Fig. 1 (plot at the left) the separate con-
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tributions of �(� + 1) C1(�)/(2) and of �(� + 1)C2(�)/(2) have been reported for a fiducial set

of parameters (i.e. n = 0.958,  = 0.1277 and  = 0.0229). This fiducial set of param-

eters corresponds to the best fit of the WMAP 3-year data alone [1]. As mentioned in Eq. (3.49)

the pivot wave-number is kp = 0.002 Mpc-1. This is also the choice made by WMAP team. In the

plot at the right (always in Fig. 1) the separate contributions of �(� + 1)C3(�)/(2) and of �(� +

1)C4(�)/(2) is illustrated for the same fiducial set of parameters (which is also described at the

top of the plot). The various contributions are expressed in units of (K)2 (i.e. 1K = 10-6K) which

are the appropriate ones for the comparison with the data. The normalization of the calculation

is set by evaluating (analytically) the large-scale contribution for � < 30 (see Eq. (3.45)) and by

comparing it, in this region, with the WMAP 3-year data release.

By summing up the four separate contributions illustrated in Fig. 1, Eq. (4.26) allows to deter-

mine, for a given choice of cosmological parameters, the full temperature autocorrelations. The

results, always in the absence of magnetized contribution, are reported in Fig. 2. In the plot at the

left of Fig. 2 the critical fractions of matter and baryons, as well as h0, are all fixed. The only quan-

tity allowed to vary from one curve to the other is the scalar spectral index of curvature perturba-

tions, i.e. n. The full line denotes the pivot case n = 0.958 (corresponding to the central value for

the spectral index as determined according to the WMAP data alone). The dashed and dot-dashed

lines correspond, respectively, to n = 0.974 and n = 0.942 (which define the allowed range of n

since n = 0.958 ± 0.016 [1]).
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The contribution of each of the integrals giving the temperature autocorrelations is reported (see Eq. (4.26))Figure 1
The contribution of each of the integrals giving the temperature autocorrelations is reported (see Eq. (4.26)). The 
parameters are chosen in such a way to match the best fit to the experimental points when only the WMAP data 
are included and the contribution of the tensor modes is assumed to be vanishing.
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As already stressed, the regime � < 100 is only reasonably reproduced while the most interest-

ing region, for the present purposes, is rather accurate (as the comparison with the WMAP data

shows). The region of very large � (i.e. � > 1200) is also beyond the treatment of diffusive effects

adopted in the present paper. In Figure 2 (plot at the right) the adiabatic spectral index is fixed

(i.e. n = 0.958) while the total (present) fraction of non-relativistic matter is allowed to vary (h0

and  are, again, kept fixed). It can be observed that, according to Fig. 2, the amplitude of

the first peak increases as the total (dusty) matter fraction decreases.

The contribution of the magnetic fields will now be included both in the Sachs-Wolfe region

(as discussed in section 3) and in the Doppler region (as discussed in section 4). In Fig. 3 the tem-

perature autocorrelations are computed in the presence of a magnetized background. The values

of the relevant magnetic parameters (i.e. the smoothed amplitude of the field BL and the spectral

slope ) are reported at the top of each plot and in the legends. In the plot at the left of Fig. 3 the

spectral slope is fixed as  = 0.01 while BL is allowed to vary. The other cosmological parameters

are fixed to their concordance values stemming from the analysis of the WMAP 3-year data and

are essentially the ones already reported at the top of Fig. 2. The diamonds are the WMAP 3-year

data points. In the plot at the right of Fig. 3 the spectral slope is still reasonably flat but, this time,

 = 0.1. For a spectral slope  = 0.01 the case BL = 1nG is barely distinguishable (but not indistin-

guishable, as we shall see below) from the case BL = 0. As soon as BL increases from 1 to 5 nG

three different phenomena take place:

• the first Doppler peak increases dramatically and it reaches a value of the order of 1.2 × 104

(K)2 when BL = 2 nG;

h0
2

0Ωb

The temperature autocorrelations for a fiducial set of cosmological parameters chosen within a concordance model and in the case BL = 0Figure 2
The temperature autocorrelations for a fiducial set of cosmological parameters chosen within a concordance 
model and in the case BL = 0.
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• already for 0.1 nG <BL < 2 nG the third peak increases while the second peak becomes less

pronounced;

• as soon as BL  2 nG the second peak practically disappears and it is replaced by a sort of

hump.

If the spectral slope increases a similar trend takes place as BL increases. However, the forma-

tion of the hump takes place for values of BL which are comparatively larger than in the case of

nearly scale-invariant magnetic energy spectrum. In Fig. 3 (plot at the right) the magnetic spectral

slope is  = 0.1 (while the adiabatic spectral slope is fixed to the concordance value, i.e. n =

0.984). To observe the formation of the hump (which is of course excluded by experimental

data) the values of BL must be larger and in the range of 15 to 20 nG. As soon as  increases

towards 1 the minimal allowed BL also increases. This is particularly evident from the two plots

reported in Fig. 4 where the values of  have been chosen to be 0.5 (plot at the left) and 0.9 (plot

at the right).

In Fig. 4 the dashed curve in the plot at the right corresponds to BL = 6 nG. For this value of BL

the hump is not yet present, while for  = 0.01 already for BL = 2nG the second peak is completely

destroyed. These differences are related to the fact that an increase in  implies, indirectly, that

the amplitude of the power spectrum of the magnetized background decreases at large length-

scales, i.e. for small wave-numbers. From Fig. 3 it can be argued, for instance, that when the mag-

netic slope is nearly flat (i.e.  � 0.01), the allowed value of the smoothed field becomes BL < 0.1

nG. It should be remarked, to avoid confusion, that the scale invariant limit for the curvature per-

turbations, according to the conventions of the present paper is n  1 while the scale invariant

The inclusion of the effects of large-scale magnetic fields in the case of nearly scale-invariant magnetic energy spec-trum (i.e. 0 < < 1)Figure 3
The inclusion of the effects of large-scale magnetic fields in the case of nearly scale-invariant magnetic energy spec-
trum (i.e. 0 < < 1). The conventional adiabatic spectral index is fixed to the same value assumed in the right plot of 
Fig. 2.
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limit for the magnetic energy density fluctuations is  << 1. Finally in Fig. 5 the effect of the var-

iation of the magnetic pivot scale is illustrated. If kL diminishes by one order of magnitude the

temperature autocorrelations increase in a different way depending upon the value of . By

diminishing kL the magnetic field is smoothed over a larger length-scale. The net effect of this

choice will be to increase the temperature autocorrelations for the same values of BL and .

For � = 210 the experimental value of the temperature autocorrelations is [1-3] 5586 ± 106.25

(K)2, while for � = 231 the experimental value is 5616.35 ± 99.94 (K)2. The next value, i.e. � =

253 implies 5318.06 ± 86.19 (K)2. By requiring that the addition of the magnetic field does not

shift appreciably the height of the first Doppler peak it is possible to find, for each value of the

spectral slope  a maximal magnetic field which approximately coincides, in the cases of Fig. 3

with the lowest curve of each plot. This argument is sharpened in Fig. 6 where the starred points

represent the computed values of the temperature autocorrelations for two different values of BL

The variation of the magnetic pivot scale is illustrated for two different spectral slopesFigure 5
The variation of the magnetic pivot scale is illustrated for two different spectral slopes.
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The inclusion of the effects related to laarge-scale magnetization in the case of a blue magnetic spectral indexFigure 4
The inclusion of the effects related to laarge-scale magnetization in the case of a blue magnetic spectral index.
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and for the interesting range of . The value of �p, i.e. the multipole corresponding to the first

Doppler peak, has been taken, according to [1-3] to be 220. If, according to experimental data,

the following condition

is enforced, then, the smoothed field intensity and the spectral slope will be bounded in terms

of the position and height of the Doppler peak. This condition is indeed sufficient since, accord-

ing to the numerical results reported in the previous figures, the distortion of the second and

third peaks are always correlated with the increase of the first peak. Already at a superficial level,

it is clear that if BL  1nG the only spectral slopes compatible with the requirement of Eq. (5.1)

are rather blue and, typically  > 0.5. The numerical values obtained with the method described

in Fig. 6 are well represented by the following interpolating formula

which holds for BL  nG a bit less accurate in the region BL > nG which is already excluded by

inspection of the shape of the temperature autocorrelations. By then comparing the value of the
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The stars represents the points obtained by numerical integrationFigure 6
The stars represents the points obtained by numerical integration. On the vertical axis, in both plots, the (com-
puted) value of the temperature autocorrelations at the first Doppler peak (i.e. � = �p) is reported as a function of 
the magnetic spectral slope for two values of the smoothed magnetic field intensity.
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temperature autocorrelations in the location of the first Doppler peak the amplitude of the mag-

netic field can therefore be bounded. In particular it is easy to show that

where

The quantity p is known once the experimental determination of the height of the peak is

available. Consequently, by determining experimentally the value of the temperature autocorre-

lations at the first Doppler peak located for a multipole �p the magnetic field intensity and the

spectral slope will be bounded according to Eq. (5.4). If, as WMAP data suggest, we take p =

3(K)2, the bounds on BL and  are illustrated in Fig. 7.

Thus, according to the results described so far it is possible to say that to avoid gross distortion

of the temperature autocorrelations attributed to large-scale magnetic fields we have to demand

that the stochastic field satisfies

BL  0.08nG, 0.001   < 1 (5.5)
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Allowed region (below the thick curve) in the plane (BL, ) for �p = 220 and for p = 3(K)2Figure 7
Allowed region (below the thick curve) in the plane (BL, ) for �p = 220 and for p = 3(K)2.
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If a magnetic field with smoothed amplitude BL  0.1 nG is present before recombination the

implication for the formation of magnetized structures are manifold. We recall that the value BL

is the smoothed magnetic field redshifted at the epoch of the gravitational collapse of the proto-

galaxy. We know that, during collapse, the freezing of magnetic flux justifies the compressional

amplification of the pre-existing field that will be boosted by roughly four orders of magnitude

during the collapse [15]. This will bring the amplitude of the field to the G level. It is however

premature to speculate on these issues. There are, at the moment, two important steps to be

undertaken:

• the forthcoming PLANCK explorer data will allow to strengthen the constraints derived in

the present paper and, in particular, the formulae derived in the present section will allow to con-

straint directly the possible magnetized distortions stemming from the possible presence of large-

scale magnetic fields;

• another precious set of informations may come from the analysis of the magnetic fields in

clusters and superclusters; it would be interesting to know, for instance, which is the spectral

slope of the magnetic fields in galaxies, clusters and superclusters.

The other interesting suggestion of the present analysis is that the inclusion of a large-scale

magnetic field as a fit parameter in an extended CDM model is definitely plausible. The CDM

model has been extended to include, after all, different possibilities like the ones arising in the

dark-energy sector. Here we have the possibility of adding the parameters of a magnetized back-

ground which are rather well justified on the physical ground. Notice, in particular, that interest-

ing degeneracies can be foreseen. For instance, the increase of the first peak caused by a decrease

in the dark-matter fraction can be combined with the presence of a magnetic field whose effect,

as we demonstrated, is to shift the first Doppler peak upwards. These issues are beyond the scopes

of the present paper.

6 Concluding remarks
There are no compelling reasons why large-scale magnetic fields should not be present prior to

recombination. In this paper, via a semi-analytical approach, the temperature autocorrelations

induced by large-scale magnetic fields have been computed and confronted with the available

experimental data. Of course the data analysis can be enriched by combining the WMAP data also

with other data sets and by checking the corresponding effects of large-scale magnetic fields. The

main spirit of this investigation was, however, not to discuss the analysis of data but to show that

the effects of large-scale magnetic fields on the temperature autocorrelations can be brought at

the same theoretical standard of the calculations that are usually performed in the absence of

magnetic fields.
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According to this perspective it is interesting to notice that, at the level of the pre-equality ini-

tial conditions, the presence of magnetic field induces a quasi-adiabatic mode. Depending on the

features of the magnetic spectrum (i.e. its smoothed amplitude BL and its spectral slope ), pos-

sible distortions of the first and second peaks can jeopardize the shape of the observed tempera-

ture autocorrelations. In particular, for sufficiently strong magnetic backgrounds (i.e. BL > 10 nG

and   0.3), the second peak turns into a hump. From the analysis of these distortions it was

possible to derive a bound that depends solely upon measurable quantities such as the location

of the first peak and its height. The derived formulae will allow a swifter comparison of the pos-

sible effects of large-scale magnetic fields with the forthcoming experimental data such as the

ones of PLANCK explorer. The available WMAP data suggest that BL  0.08 nG for 0.001   < 1.

This range of parameters does not exclude that magnetic fields present prior to recombination

could be the seeds of magnetized structures in the sky such as galaxies, clusters and superclusters.

It is also interesting to remark that the allowed range of parameters does not exclude the possi-

bility that the magnetic field of galaxies is produced from the pre-recombination field even with-

out a strong dynamo action whose possible drawbacks and virtues are, at present, a subject of

very interesting debates.

In recent years CMB data have been confronted with a variety of cosmological scenarios that

take as a pivotal model the CDM paradigm. Some of the parameters usually added encode

informations stemming from effects that, even if extremely interesting, arise at very high energy

and curvature scales. While it is certainly important to test any predictive cosmological scenario,

we would like to stress that the purpose of the present work is, in some sense, more modest. We

hope to learn from CMB not only what was the initial state of the Universe when the Hubble rate

was only one millionth times smaller than the Planck (or string) mass scale; if possible we would

like to learn from CMB how and why the largest magnetized structures arose in the sky. Since we

do see magnetic fields today it is definitely a well posed scientific question to know what were

their effects prior to recombination. It would be desirable, for instance, to find clear evidence of

the absence of pre-recombination magnetic fields. It would be equally exciting to determine the

possible presence of this natural component. It is therefore opinion of the author that the inclu-

sion of a magnetized component in future experimental studies of CMB observables represents

a physically motivated option which we do hope will be seriously considered by the various col-

laborations which are today active in experimental cosmology.

A Magnetized gravitational perturbations
In this Appendix the evolution equations of the magnetized curvature perturbations will be pre-

sented in the conformally Newtonian gauge where the only two non vanishing components of

the perturbed metric are

          s sg x a x gij x a x ij00 2 2 2 2( , ) ( ) ( , ), ( , ) ( ) ( , ) ,
   = = (A.1)
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where s signifies the scalar nature of the fluctuation. While these equations are available in the

literature [34,35], it seems appropriate to give here an explicit and reasonably self-contained

treatment of some technical tools that constitute the basis of the results reported in the bulk of

the paper.

The magnetic fields are here treated in the magnetohydrodynamical (MHD) approximation

where the displacement current is neglected and where the three dynamical fields of the problem

(i.e., respectively, the magnetic field, the Ohmic electric field and the total Ohmic current) are all

solenoidal. The bulk velocity field, in this approach, is given by the centre of mass velocity of the

electron-proton system. This is physically justified since electrons and protons are strongly cou-

pled by Coulomb scattering. Photons and baryon are also strongly coupled by Thompson scat-

tering, at least up to recombination which is the relevant time-scale for the effects of magnetic

fields on temperature autocorrelations. The bulk velocity of the plasma can be separated into an

irrotational part and into a rotational part which contributes to the evolution of the vector modes

of the geometry [27]. In the present investigation only the scalar modes are treated and, therefore,

only the irrotational part of the velocity field will be relevant. In the MHD approach the magnetic

fields enter, both, the perturbed Einstein equations and the Boltzmann hierarchy.

A.1 Perturbed Einstein equations

The perturbed Einstein equations are affected by the various components of the (perturbed)

energy-momentum. The contribution of the magnetic fields to the scalar fluctuations of the

energy-momentum tensor are:

where

is the magnetic anisotropic stress. Using the practical notation15 is  the spatial

(and traceless) components of the perturbed Einstein equations imply

4( - ) = 12Ga2[p + )
2 + (p + )

2B], (A.4)

where  is the neutrino anisotropic stress. The Hamiltonian and momentum constraints can

then be written as

  

 
    

s B s B B
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0
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8 4 3
= = =− + =B x
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i
j p i

j
i
j p
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
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4 4
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where t = aa is the total density fluctuation (with the sum running over the four species of

the plasma, i.e. photons, baryons, neutrinos and CDM particles). Equations (A.5) and (A.6) are

simply derived from the perturbed components of the (00) and (0i) Einstein equations [34,35]

(see also [13] for a comparison with the conventional situation where magnetic fields are

absent). Notice that the MHD Pointying vector has not been included in the momentum con-

straint. The rationale for this approximation stems from the fact that this contribution is propor-

tional to  and it contains one electric field which is suppressed, in MHD, by one power of

c, i.e. the Ohmic conductivity.

In Eq. (A.6) t is the three-divergence of the total peculiar velocity, i.e.

where b is the baryon-photon velocity and Rb is baryon-photon ratio defined in Eq. (2.10). In

particular, at recombination,

Finally from the spatial components of the perturbed Einstein equations we get

The evolution equations of the metric fluctuations can be also usefully supplemented by the

covariant conservation of the total density fluctuation of the fluid which can be written as

This form of the total conservation equation allows to find rather swiftly the evolution equa-

tions of the gauge-invariant density contrast . The evolution equation of the total velocity field

of the mixture can also be obtained from the covariant conservation of the total energy-meomen-

tum tensor

∇ − + ′ = +2 3 4 2      ( ) ( ),Ga t B
(A.5)

∇ + ′ =− +2 4 2( ) ( ) ,    Ga pt t t
(A.6)

  
∇⋅ ×( )E B

( ) ( ) ,p Rt t t c c b b+ = + + +      
4
3

4
3

1 (A.7)
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′′+ ′+ ′ + ′+ + ∇ − = +          ( ) ( ) ( ) ( ).2 2 2 1
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where  denotes the shear viscosity coefficient which is particularly relevant for the baryon-pho-

ton system and which is related to the photon mean free path (see below in this Appendix).

A.2 Different fluids of the mixture
The relevant equations will now be written directly in Fourier space omitting the explicit refer-

ence to the wave-number since the subscript may be confused with the other subscripts labeling

each species of the fluid. The evolution of CDM particles is rather simple since it is only sensitive

to the fluctuation of the metric:

Defining the gauge-invariant density contrast of CDM, i.e. c = - + c/3, it is immediate to

combine Eqs. (A.12) and (A.13) and obtain:

whose solution is

where i is the initial integration time. In terms of the CDM density contrast and in the limit of

vanishing anisotropic stress

The lowest multipoles of the neutrino hierarchy lead to the following set of equations where

the contribution of the quadrupole (i.e. 2) and octupole (i.e. 3) have been explicitly

included:

( ) [( ) ( )] ( )p p p p pt t t t t t t t t t t+ + ′ + ′ + + + ∇ + + ∇ + ∇ =        4 2 2 4
3

2 0 ,,

(A.11)
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′ + =  c c k2 . (A.13)
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Unlike neutrinos and CDM particles that feel the effect of the magnetic fields through the ani-

sotropic stress and through the metric fluctuations, the photons, being tightly coupled with the

baryons by Thompson scattering, are directly affected by the presence of large-scale magnetic

fields. Let us clarify this point by writing, separately, the relevant evolution equations for the pho-

tons and their counterpart for the baryons. In real space the evolution equations of the photons

can be written as:

where ' is the inverse of the photon mean free path. The baryon evolution equations are:

where  is the MHD Lorentz force. Equations (A.21) and (A.23) can now be summed and

subtracted after having multiplied Eq. (A.23) by Rb. By subtracting the two aforementioned equa-

tions, we will obtain an equation for ( - b) whose solution will imply a strong damping lead-

ing, in spite of the initial conditions, to  � b = b. From the sum of Eqs. (A.21) and (A.23) the

evolution equation of  bwill then be directly obtained. In the tight coupling limit the evolution

equations of the magnetized baryon-photon system is, therefore [34]:

′ = ′ −  4
4
3

, (A.17)
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where

is the shear viscosity coefficient that leads to the Silk damping of the high harmonics in the CMB

temperature autocorrelations. The important identity (heavily used in this algebra) is

This identity can be swiftly derived by recalling Eq. (A.4) and by using two further vector iden-

tities:

The relation between the magnetic anisotropic stress and B has been introduced before (i.e.

after Eq. (A.4)) and it is simply . Defining the gauge-invariant density contrast

for the photons, i.e.  = - + /4 and combining Eqs. (A.24), (A.25) and (A.26) the following

simple equation can be readily obtained:

By now defining the photon-baryon sound speed csb we have

which also implies, when inserted into Eq. (A.30), that
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By now changing variable from the conformal time coordinate  to , Eq. (A.32)

becomes:

The solution of the homogeneous equation can be simply obtained in the WKB approxima-

tion [39,42,43,45] and it is

where the quantities appearing in Eq. (A.34) are:

Since  = 4( + ), Eqs. (A.33), (A.34) can also be used to determine the photon density con-

trast which is a key ingredient for the estimate of the temperature autocorrelations both at large

and small angular scales.

A.3 Evolution of the brightness perturbations

The evolution equations of the brightness perturbations can be easily derived within the set of

conventions employed in the present paper. Recalling that b is the divergence of the peculiar

velocity field of the baryons, it is convenient to define, for notational convenience, vb i.e.

where the second equality holds in the tight coupling approximation. From Eq. (A.23) it then

follows that the evolution of vb is simply given by
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having used that  = 3kI1 which simply reflects the occurrence that the dipole of the intensity

of the perturbed radiation field is related to the peculiar velocity of the photons once the fluctu-

ation of the intensity is expanded in multipoles as

where  is the direction of the momentum of the photon,  and P�() are the Legendre

polynomials of index � and argument . Analog expansion hold for the brightness perturbations

related with the other two Stokes parameters, i.e. Q and U. It should be remarked, incidentally,

that the �-dependent factors appearing in Eq. (A.39) are conventional. If different conventions

in the expansion are adopted, the various expressions of the multipoles will change accordingly.

With these necessary specifications we have that

where we defined, for notational convenience

SQ = I2 + Q0 + Q2. (A.43)

In Eqs. (A.41)–(A.42), P2() = (32 - 1)/2 is the Legendre polynomial of second order, which

appears in the collision operator of the Boltzmann equation for the photons due to the direc-

tional nature of Thompson scattering. Since we shall be chiefly concerned with the temperature

autocorrelations, let us remind that, using the technique of integration along the line of sight, Eq.

(A.40) can be solved, after integration by parts, as

′ + + +
′
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where  = ' e- is the visibility function. In the sudden recombination approximation, relevant

for wavelengths larger that the Hubble radius we will have that, according to Eq. (A.44) the Sachs-

Wolfe contribution and the integrated Sachs-Wolfe contribution are simply given by

At smaller angular scales the finite thickness of the last scattering surface cannot be neglected

anymore and the general expression for the C� coefficients becomes then:

where

In Eq. (A.47) we the visibility function is approximated by a Gaussian in a way similar to what

has been done in [39-41,45]:

where 1 = 33.59.

Note
1e-mail address: massimo.giovannini@cern.ch

2The terminology adiabatic (and non-adiabatic) is used to classify the initial conditions of curvature perturbations in

the pre-equality plasma. A solution is said to be adiabatic if the fluctuations of the specific entropy vanish at large

length-scales. The opposite is true for a non-adiabatic solution. See section 3 and discussions therein.

3In the present paper by BL we denote the magnetic field smoothed over a typical comoving scale L = 2/kL with kL =

Mpc-1. This choice is purely conventional and refers to the occurrence that the gravitational collapse of the protogalaxy

occurs over a typical comoving scale of the Mpc. The usefulness of this convention will become clear later on.

4As the name of the instrument suggests the collecting area of SKA will be of 106 m2. The angular resolution of SKA is

designed to be of 0.1 arcsec at 1.4 GHz. The frequency capability of the instrument will presumably be between 0.1

and 25 GHz. While the frequency range may be optimistic, it is certainly inspiring to think that 25 GHz is not so far

from the 30 GHz of the low-frequency channel of the PLANCK Explorer [25]. This occurrence might have a relevant

experimental impact for the possible analysis of Faraday rotated CMB polarization, as recently emphasized [27].

5The breaking of parity (often related to the turbulent nature of the bulk velocity field) is one of the necessary condi-

tions for the persistence of the dynamo term in the magnetic diffusivity equation. For some classic introductions to


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dynamo theory see [49,50]. In this paper it will be assumed that the pre-recombination plasma is not kinetically tur-

bulent since the values of the kinetic Reynolds number drops below 1 for temperature smaller than the threshold of

electron-positron annihilation [15]. Possible effects related to kinetic turbulence have been contemplated by the lit-

erature but for much higher temperatures in the life of the Universe but anyway always above the threshold of electron-

positron annihilation (i.e. T > MeV).

6For the Fourier transforms we use the following conventions:  and, conversely,

.

7In the present and in the following sections the we we will often pass from the real space to the Fourier space descrip-

tion. We will avoid, though, to write the explicit subscripts referring to the Fourier mode since they might get confused

with the indices labeling the fluctuations of the different species of the plasma.

8In Eq. (3.10) R denotes the fraction of photons in the radiation plasma. Neutrinos are effectively massless prior to

equality and their fraction will be denoted by R. Note that R + R = 1 and R = r/(r + 1) where r = 0.681(N /3). Con-

sequently R = 0.594 for three families, i.e. N = 3.

9Notice, incidentally, that nearly scale-invariant magnetic energy spectra also arise in string inspired cosmological

models [56] as a consequence of the breaking of conformal invariance during the pre-big bang phase.

10The analytical calculation of the integral of Eq. (3.37) holds for -3 <n < 3 and for � < 30. This means that the result

is accurate for sufficiently large angular scale. In fact, the angular separation  is approximately equal to /�. If � < 26,

then  > 7 deg. This was, for instance, the region explored by the COBE team and it is the regime where CMB anisotrop-

ies computations may be usefully normalized.

11In section 5 the scalar spectral index will be denoted by n, stressing, in this way, that we refer to the spectral index

appearing in the power spectrum of .

12Notice that, in this paper, the natural logarithm will be denoted by ln while the base-10 logarithms will be denoted

by log.

13In particular the data of the Supernova Legacy Survey (SNLS) [68] and the so-called Supernova "Gold Sample"

(SNGS) [69,70].

14The values quoted for all the cosmological observables always refer to the case of a spatially flat Universe where the

semi-analytical calculation has been performed.

15In the conformally flat parametrization adopted in the present paper (see also Eq. (2.1)), 2 = i
i is just the conven-

tional Laplacian. If the spatial geometry would be curved, 2 will be defined in terms of the appropriate spatial geom-

etry. The analysis of open or closed Universes is, however, not central for the present analysis (see first and second

paragraph of section 2). Notice, furthermore, that, as in the bulk of the paper, the prime denotes a derivation with

respect to the conformal time coordinate .
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