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Abstract

A theory of gravitation is proposed, modeled after the notion of a Ricci flow. In addition to
the metric an independent volume enters as a fundamental geometric structure. Einstein
gravity is included as a limiting case. Despite being a scalar-tensor theory the coupling to
matter is different from Jordan-Brans-Dicke gravity. In particular there is no adjustable
coupling constant. For the solar system the effects of Ricci flow gravity cannot be
distinguished from Einstein gravity and therefore it passes all classical tests. However for
cosmology significant deviations from standard Einstein cosmology will appear.

PACS Codes: 04.50.+h, 04.20.Cv, 02.40.Hw

1 Introduction
A generalization of Einstein's theory of gravity is developed. It has a purely geometric foundation,

including in addition to a metric an independent volume. Although related to scalar-tensor theories

à la Jordan-Brans-Dicke and to string cosmology, it is nevertheless different: the basic field equa-

tions are in the form of Ricci flow equations, generalized to include matter. Einstein's theory is

included as the limiting case of no flow. The volume scalar has two interpretations: geometri-

cally, it is responsible for volume-preservation and physically it obeys a mass-zero real scalar

wave equation. This is also the main difference with Jordan-Brans-Dicke theories, where the sca-

lar couples to the trace of the energy-momentum tensor. As a consequence, in general the energy-

momentum tensor is not anymore "conservative" in the ordinary sense of ∇·T = 0, and point

particles do not move anymore on geodesics, having a Newton-Nordström potential. But from

Noether's fundamental relation conservation still follows from symmetry. Nevertheless, in "ordi-

nary" solar-system and astrophysical settings, the corrections are negligible: the theory cannot be

distinguished from Einstein's and therefore passes all the standard tests. However in a cosmolog-

ical setting, deviations from standard Einstein gravity are to be expected. This will be the subject

of a forthcoming paper.
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We will proceed as follows: after this brief introduction, in section 2 the motivations for this

kind of extension are discussed. In section 3 a short introduction to volumetric manifolds is

given, emphasizing the notion of volume-preservation in section 4. Before establishing the defin-

itive field equations of Ricci flow gravity in section 6, several other choices are discussed in sec-

tion 5, with emphasis on the main differences with respect to Einstein's and in particular to

Jordan-Brans-Dicke theories. Section 7 refers to the physical interpretation of the volume scalar

in Ricci flow gravity. Finally, in section 8 the viability of the theory with respect to the standard

tests is discussed. The conclusion in section 9 ends this paper.

2 Motivation and Inputs
The present work is principally motivated by the conviction that the notion of "volume" has an

existence independent from any metric – in fact, it must be considered to be a pre-metric concept.

Curiously, such an independent volume had not been taken into consideration in physical the-

ories until relatively recently. Even in differential geometry it is almost ignored. Perhaps the rea-

son for this neglect is that in most circumstances there is a canonical volume element, based on

other geometric structures considered to be more basic. For example, in Riemannian geometry

the volume element density is defined in terms of the metric. In particular, the important opera-

tion of Hodge dual for differential forms is conventionally based on such a Riemannian volume

element.

However, from the gravitational sector of the low-energy limit of string theory (i.e., compac-

tification to dimension n = 4) there comes the suggestive hint (cmp. Garfinkle, Horowitz and

Strominger [1]) that when both a dilaton scalar and a two-form are present, the dilaton scalar

enters the expression for the volume element density when defining a "natural" Hodge dual oper-

ator.1  This was taken as the starting point to develop a theory of geometric dilaton gravity (Graf

[4]). Although the particular coupling does not exactly correspond to the coupling suggested by

string theory, wormholelike solutions were obtained.

Recently a breakthrough on Ricci flow methods was achieved by Perelman [5-7], developing

the decisive tools to solve the famous Poincaré conjecture on the topological characterization of

the three-sphere. Based on 3-d (compact and positive-definite) Riemann spaces, smoothly

deformed by a Ricci flow (RF), the "basic" RF equation was originally defined by

∂ t gi k  = -2 Ri k , (1)

where Ri k  is the Ricci-tensor corresponding to a "time-dependent" three-metric gi k . Also a special

class of diffeomorphisms was considered, with vector  which is essentially the gradient of a sca-

lar φ  in the sense of vi  = gi k∂ kφ . The so generalized RF equation then becomes

v
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∂ t gi k  = -2 (Ri k  + ∇ i∇ kφ ). (2)

Although such equations have already been studied since the early eighties starting with the sem-

inal works of Hamilton [8] and DeTurck [9], an essential insight of Perelman was to recognize

that the r.h.s. of this equation2  can be expressed as the gradient of an appropriate functional. This

functional involves a "measure" given in terms of an independent volume element. The gradient

property allows to apply a series of standard analytical tools. And the introduction of the measure

gives an extra flexibility, analogous to a choice of gauge.3

Since the works of Hamilton and DeTurck just mentioned, geometric flows have been applied

to a variety of geometric, topological and analytical problems.4  Flow-like equations are also not

unfamiliar to physicists, the earliest and most well-known being the renormalization group

equations in quantum field theory (for an introduction, see Mitter [14]), and also the nonlinear

σ -model (e.g., Lott [15], Oliynyk, Suneeta and Woolgar [16], Tseytlin [17]). After Ellis [18] called

attention to the cosmological "fitting problem", the usefulness of the Ricci flow to deal with vol-

ume-averaged inhomogeneities was immediately recognized and continues to be an active area

of research (e.g., Carfora and Marzuoli [19], Buchert and Carfora [20], and the recent review by

Buchert [21]). An overview of flow techniques in physics is given in Bakas [22].

Another motivation came however with the insight, that the basic equations derived from the

low-energy limit of string theory can be put into a form suprisingly similar to Ricci flow equa-

tions when besides the metric only a dilaton scalar is kept. The main formal difference is the

number of dimensions and the signature of the corresponding Riemann spaces: whereas the

"classic" RF equations refer to a parameter-dependent truly Riemannian three space evolved by

an extrinsic "time" parameter, the reformulated string theory equations refer to a four-dimen-

sional Lorentzian spacetime, which is evolved along the directions of an intrinsic vector field.

Neither the "classic" RF approach nor string theory suggest any hints about the coupling of

geometry to external matter fields. Therefore we will spend some time to prepare the field in

order to include other external matter. As not only geodesy of the motion of "test particles" will

in general be violated, but also "conservation" (in the sense of ∇·T = 0), we will be especially

careful to lay a coherent and stringent foundation. The Noether identities will be our main guide.

As result we will get Ricci flow gravity (RFG).

For the history of scalar-tensor theories and their current status, we refer to Brans [23], and to

the recent monographs of Fujii and Maeda [24] and Faraoni [25].

3 Volumetrical Manifolds
In Graf [4] we already introduced the notion of a volume manifold and its specialization for the

case a nondegenerate metric exists. Let us briefly recapitulate the main notions. First, we intro-
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duced the fundamental concept of a volume structure, which has to be considered as independent

from any metric. This is just a non-negative n-form density � , and makes the manifold a volume

manifold. Secondly, we will need of course a metric structure. However, it does not need to be

compatible with the volume structure. This difference is encoded by means of the volume scalar

φ  by �  = ω e -φ,5  where ω  := |det g|1/2dx1 ∧ dx2 ∧ ... ∧ dxn  is the usual metrical (i.e., Riemann-

ian) volume element density. Furthermore, for the metric derivative along a vector X we have

∇ X� = -(X·∂φ )�  (the dot denoting a contraction) as a measure of incompatibility.

Such a manifold, endowed both with an independent volume and a metric structure, we will

denote by volumetrical manifold. Whereas the manifold is considered to be smooth, both met-

ric and volume element density are allowed to diverge or to be degenerate, when they are not

locally smooth.

Already in a volume manifold the Gauss theorem for a vector ξ  can be expressed very com-

pactly in terms of differential form densities as

where bΩ  is a two-sided hypersurface bounding the n-dimensional region Ω . The scalar factor

div ξ  in the relation d(ξ·�) = (div ξ ) � is also better known under the name of divergence of the

vector ξ . Evidently the div-operator only depends on the particular choice of �  and not on any

metric.

4 Volume Preserving Lie Flows
In a differentiable manifold, the thing coming closest to an autonomous first order differential

equation for a "vector" x(t),

is the notion of a Lie equation

£ξF = G, (5)

where F and G are geometric objects (e.g., tensors), ξ  is some vector field and £ξF denotes the

Lie derivative of F along ξ . In the simplest case ξ  and G are considered as given and F to be deter-

mined. However in the applications we have in mind, all elements of the equation will be

dynamically determined, G depending nonlinearly on F and its partial derivatives, and even ξ
will become dynamical.

ξ ξ
b

d
Ω Ω∫ ∫⋅ = ⋅ωω ωω( ), (3)

x f x= ( ), (4)
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In the theory of ordinary differential equations, such systems of first-order equations which

guarantee the long-term existence both to the future and the past, are also called flows and can

be characterized by the one-parameter Abelian group property of their solutions. As well-known, Lie

operators share exactly the same one-parameter Abelian group property (at least locally) by

means of the exponential map. We can therefore speak of a Lie flow.

In a volume manifold, a Lie flow with vector ξ  is called volume-preserving (or VP)6  if

£ξ�  = 0, or equivalently, div ξ  = 0. (6)

In the rest of this paper we will try to make plausible a particular scalar-tensor extension of Ein-

stein gravity in terms of a volume-preserving Ricci Lie flow in a volumetric manifold.

5 A choice of Scalar-Tensor Field Equations
Assuming that the total Lagrangian (or at least the field equations) can be uniquely split into a

pure geometrical part and the "physical" part, we can already draw important conclusions about

both the algebraic and the differential properties of the "physical" energy-momentum tensor just

from examining the purely geometrical part. Note that whereas Perelman's analysis is "metric-

centered", with an auxiliary scalar, in the following physical applications this scalar will play a

role at the same conceptual level as the metric. Therefore the "classical" Lagrangian approach is

appropriate.

Let us start with the "geometrical" Lagrangian living on a volumetric manifold M,

where �  := e -φω  and (∇ φ )2  := gi j∂ iφ ∂ jφ  and λ  is a constant parameter. Despite its simple form

it not only includes the one used initially by Perelman and in the low-energy limit of string the-

ory (when ignoring the axion and the other moduli fields), but which also is essentially the Jor-

dan-Brans-Dicke Lagrangian.

Defining the volume factor Φ  := e -φ, we then have as variational derivatives (up to volume ele-

ment, g-dualizations of P and a common sign -1)

 = + ∇ωω ( ( ) ),R λ φ 2 (7)

δ
δ

λ


g

P G g

g

ik
ik ik i k ik

i k ik

~ : ( )

( ( ) ),

= − ∇ ∇ −

+ ∇ ∇ − ∇

−

−

Φ Δ Φ

Φ Φ Φ Φ

1

2 21
2

(8)
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where G denotes the Einstein tensor Gi k  := Ri k  – R gi k  and Δ  := ∇ 2  the d'Alembertian. For the

above Lagrangian the Noether identity can be written compactly as

with some tensor  to be determined by it. More conventionally,

As this identity must hold for any smooth vector ξ , we get separately

Note that from equation (11) follows conservation in the proper sense, if  is a simultaneous Kill-

ing vector both of the metric and of the scalar, even if Q ≠  0.

The following algebraico-differential relations evidently hold:

symmetry: , and

balance: ∇ i (Φ ) = Q ∂ kΦ .

Up to this point we only made use of identities, but not of any field equations. In particular

if we equate P and Q to their corresponding physical quantities, these algebraico-differential rela-

tions will be "impressed" on them. In fact, it is not even necessary that they follow from a

Lagrangian.

But note that there is a dependency not only on λ  but also on the number n of dimensions,

making n = 4 and n = 3 (for λ  = 1) somewhat special. This is most evident in the relation

where P is the "trace" P := gi k Pi k . Assuming from now on n = 4, this simplifies to

δ
δφ

λ λ
~ : ( ) ,Q R= − + ∇− −2 1 2 2Φ ΔΦ Φ Φ (9)

1
2

div ( ) ,P P g Qk
i k ik

ikξ φξ ξ= +£ £ (10)

Pk
i

∇ ( ) = +( )i k
i k ik

ikP P g QΦ Φξ φξ ξ£ £ . (11)

P P P Qik ik i k
i

k= ∇ = ∂2 and ( ) .Φ Φ (12)

ξ

P Pik ki=

Pk
i

P Q n n+ = − − − − ∇− −(( ) ) ( ) ( ) ,1 2
2

41 2 2λ λΦ Δ Φ Φ Φ (13)
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P + Q = (3 - 2λ )Φ - 1ΔΦ . (14)

Let us define the geometrical energy-momentum tensor Pi k  := 1/2  and more closely examine the

corresponding balance relation

The following cases can be distinguished, when equating the geometrical quantities P and Q to

their "physical" counterparts Pm  and Qm :

a) Pure Einstein, φ  = 0

b) Conformally Einstein, λ  = 3/2

c) "Conservative", Q = 0

d) VP flow, ΔΦ  = 0

e) Fully dynamical.

Each of these choices will now be discussed individually.

5.1 Pure Einstein
This is just the "compatibility mode", or "Einstein-limit" φ  →  0 (if it exists). It is thus a volumet-

ric theory only in the trivial sense of φ  = 0.

5.2 Conformally Einstein

The system of equations is underdetermined. This becomes evident by going to the Einstein-

frame by means of the conformal transformation , where the scalar field drops out

completely.

5.3 "Conservative": Jordan-Brans-Dicke

From Q = 0 there follows "conservation" in the usual sense of ∇i(Φ ) = 0. This assumes the

particular relation PΦ = (3 - 2λ) ΔΦ, which could either be postulated or obtained by a spe-

cially tailored Lagrangian. In order to have a more familiar looking equation, Pik could be

equated to the physical quantity Tik over Pik = Φ-1Tik, so that in fact "conservation" in the

sense of ∇i = 0 would result. This kind of "conservation" was considered as absolutely

Pik

∇ = ∂i k
i

kP Q( ) .Φ Φ1

2
(15)

′ =g e gik ik
φ

Pk
i

Tk
i
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essential in the closely related scalar-tensor theories of Jordan and Brans-Dicke (in short, JBD

theories).7 In fact, this can be achieved as follows: their scalars φ  (resp. κ ) must be identified

with Φ , and we must identify their coupling parameters -ω  (resp. ζ ) with λ . Moreover λ  ≠  3/2

has to be assumed, otherwise the conformally Einstein theory would result. Then 1/φ  (resp. κ )

is interpreted as the (variable) gravitational constant. Both for Jordan's and Brans-Dicke's mate-

rial energy-momentum tensor it is supposed that it does not depend on the scalar φ . However in

Jordan's theory it is the product κ 2  which is "conserved".8  In particular, for a "dust model"

geodesy of  (resp. κ 2 ) and conservation of ρ  (resp. κ 2ρ ) still follow when staying in the

original conformal ("Jordan") frame.

5.4 Volume-preserving Flow
When not a conformally Einstein coupling, from equation (14) the condition P + Q = 0 is equiv-

alent to ΔΦ  = 0, which in turn is equivalent to volume-preservation Ëξ ω  = 0. This translates to

the scalar condition

Pm  + Qm  = 0 (16)

for the corresponding "material" quantities. Let us call such a coupling to matter a volume-preserv-

ing material coupling (VPMC), and assume it to hold troughout this section. Then

Evidently, if the trace Pm  of the energy-momentum tensor vanishes the VPMC is satisfied if we

set Qm  = 0. Then the standard "conservation" continues to hold. This is the case e.g. for the Max-

well field.

As an important example where P ≠  0, let us take the ideal fluid model, where the material 6

energy-momentum tensor is given by  := T i k  = ρ ui uk  + p∏ i k , and  is the pro-

jector orthogonal to the trajectory with (normalized) tangent . Its trace is T = 3p - ρ . To satisfy

the VPMC, we must set Qm  = -T. Specializing to pure dust we get ∇ i (Φ ρ ui uk ) = ρ gi k∂ iΦ .

Splitting into tangential and orthogonal parts, we then get the separate equations

Due to the nonvanishing of the r.h.s. of these equations, both "conservation of matter" and

geodesy for "test particles" are broken unless φ  = const. And due to the particular form of the

Tk
i

u u u u

∇ = − ∂i k
iP P k( ) .Φ Φ1

2
(17)

Pm
ik ∏ = +k

i
k
i i

ku u: δ

u

1
2

∇ = − = ∏ ∂i
i i

ku u ik( ) .ρ ρφ φ1

2

1

2
and (18a+b)
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equation of motion 18b (i.e., being proportional to a gradient) we have in fact got a Newton-

Nordström-term.9

Concerning the divergence expression (18a), it can nevertheless be rewritten as a conservation

law, ∇i (Φ 1/2ρ ui ) = 0. Therefore, for such a theory with volume-preserving flow, both the equa-

tion of motion as well as the "conservation of dust matter" are not anymore the well-known

standard expressions from Einstein or Jordan-Brans-Dicke theory. It can be expected that this will

have profound consequences in a cosmological setting.

We will continue the discussion of volume-preserving theories in section 6, where we further

specialize to the coupling parameter λ  = 1.

5.5 Fully dynamic Scalar Field

Here the scalar φ  is dynamically determined by a set of field equations obtained via a suitable

Lagrangian, and no case of the previously discussed ones fits. This would normally be the "stand-

ard" procedere in physics, where not only the Lagrangian is set up as a linear combination of indi-

vidual Lagrangians, each one describing a different matter model, but in addition possibly

introducing some extra "potential terms" containing φ  and ∂ φ , or even let λ  depend on φ . How-

ever this will in general prevent a simple geometrical interpretation in terms of a flow, and in par-

ticular will lack the crucial VP property. For example, our geometric dilaton gravity (Graf [4])

belongs to this more general class.

6 Ricci Flow Gravity
The class of volume-preserving volumetric theories can be further refined by requiring the partic-

ular value λ  = 1 of the coupling, as is common in the low-energy limit of string theory. With this

particular value the field equations can be rearranged into an explicit flow-like form and we get

the Ricci flow gravity equations (RFG equations)

describing Ricci flow gravity (RF gravity). Here the flow vector is defined in terms of the volume

scalar as  = -g–1∂ φ , 10 and  := 8π (Tik – Tgik).11  In contrast to the JBD equations, they have

a much simpler structure and an immediate geometric character. Through their particular flow-

like form, they exhibit a strong dynamical touch: broadly speaking, the rate of change of the metric

is driven by the difference of the geometrical and the physical energy momentum tensors. Evi-

dently, when the flow vector can be ignored (e.g., when it vanishes) equations equivalent to Ein-

stein's are obtained. In this sense Einstein gravity is a special case of Ricci flow gravity.

£ξ g R Tik ik ik= −2( ), (19)

£ξ ωω = 0, (20)

ξ Tik
1
2
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The RFG vacuum equations are equivalent to JBD's vacuum equations with ω  = -1. More

remarkably is the fact that they are also equivalent to the equations following from the low-

energy limit of string theory when the standard dilaton coupling with λ  = 1 is chosen and besides

the metric only the dilaton scalar is kept. And of course there is a strong resemblance to Perel-

man's Ricci flow equations which can be made more evident as follows. Consider tentatively on

M := M3 ×T the vector  := -(∂ t  + ) and the metric gi k  with line element ds2  = dσ 2 – dt2 . Then

the generalized RF equation (2) can be written as , which differs (in content, but

not in form) only on the r.h.s. from the corresponding RFG vacuum equation.12

This coincidence of seemingly different approaches could signal a deeper raison d'être.

7 On the physical interpretation of the scalar Φ
The scalar Φ  was here interpreted geometrically in the context of a volumetrical manifold as the

volume factor. In the theories of JBD the corresponding scalar is essentially interpreted as "gravit-

ational constant" κ  – more precisely κ  = Φ  in Jordan's theory, whereas κ  = 1/Φ  in Brans-Dicke

theory. However this physical interpretation cannot be upheld anymore in a volume-preserving

theory like RFG where κ  is constant.

Due to the fact that the volume factor Φ  of a volume-preserving theory obeys the

d'Alembertian wave equation ΔΦ  = 0 it must therefore be interpreted as a massless real scalar field.

By the tenets of relativistic quantum mechanics this corresponds to a totally uncharged massless

bosonic particle.13 The volume-preservation will also be instrumental to guarantee an almost per-

fect compliance with the standard solar system tests of gravity. This is a fair return for the price

we had to pay for giving up the geodesy of "test particles".

8 Compliance of Ricci flow gravity with the Standard Tests
For the standard solar system tests the corresponding generalization of the Schwarzschild metric

is needed. The general asymptotically flat and static spherically symmetric vacuum RFG solution

with Φ  →  1 for r →  ∞  can be written as

ds2  = -Yγ -σdt2  + Y -γ -σ(dr2  + Z2 dΩ 2 ), (21)

ξ ν

£ξ g Rik ik= 2 3( )

Φ ≡ =

= −
−

= − −

−

+

−
+ −

e Y

Y
r r
r r

Z r r r r

φ σ ,

: , : ( )( ),

where

2
(22)
Page 10 of 13
(page number not for citation purposes)



PMC Physics A 2007, 1:3 http://www.physmathcentral.com/1754-0410/1/3
with γ 2  + σ 2  = 1, and it is assumed that r ≥  r+  > r-  ≥  0.14 Being for r > r+  a vacuum RFG solution,

it is also the corresponding general JBD vacuum solution in the "Jordan"-frame. But whereas in

JBD gravity the source of the volume factor Φ  for a mass point has to be a certain nonzero dis-

tribution supported by r = r+ , in RF gravity due to ΔΦ  = 0 it must be sourceless. This can be

shown to hold even for a compactly supported smooth static spherically symmetric energy-

momentum tensor as source, if both metric and volume factor are smooth and the manifold is

simply-connected. Therefore for RFG σ  = 0, whereas for JBD σ  = 1/2 (3 + 2ω )- 1 .

This can also be expressed more conveniently in terms of the "dilaton charge" D, which in the

context of the low-energy limit of string theory is defined for a static solution with Killing vector

η  (normalized to η 2  = -1 at infinity) as

where the integral is taken over a closed and externally orientable 2-sphere at spatial infinity.15

For RF gravity the two-form density χ  := η·ξ·�  is even closed, dχ  = 0, for any stationary solution

with Killing vector η  so that the above integral only depends on the homology class of the closed

externally orientable 2-sphere. In particular it vanishes if this 2-sphere bounds. With the flow vec-

tor  = σ  (r+ – r– )Yγ + σZ - 2  ∂ r  for the above solution this results in D = σ  (r+ – r– ). For vanishing

dilaton charge the Schwarzschild solution is evidently reobtained after substituting r by r+ + r– ,

setting m = (r+ – r– )/2 and assuming m > 0. Thus for the standard solar-system tests the flow vec-

tor vanishes and we have full compatibility with Einstein gravity, which passes these tests with ever

increasing accuracy (cf. Will [32]).16

Of course where the flow vector does not vanish, Ricci flow gravity and Einstein gravity will

lead to different answers. Using heuristically the term "charge" as introduced above (possibly

without stationarity) we note that differently from the "mass charge" m, the "dilaton charge" D

can have any sign.17 Therefore the contributions to the total charge of a collection of "charged

regions" can still sum up to zero, so as to make the Newton-Nordström-terms of the equation of

motion insignificant for sufficiently big distances.18 This should be considered to be in fact the

case for "ordinary matter" building up planets, stars and perhaps, galaxies. Significant differences

are however to be expected in a cosmological setting, where the "big bang" will affect the behav-

iour of the volume scalar φ .

Although for the "compliant mode" φ  = const evidently it makes no difference if the metric is

interpreted in the geometric frame or in the Einstein frame, this is not so in the general case where

even the equations of motion for a point particle are modified. We have to chose the particular

D = ⋅ ⋅∫1
4π

η ξ ωω, (23)

ξ
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conformal frame, where the field equations find their "most natural expression". This is the geo-

metrical frame with an independent volume element density.

9 Conclusion
Motivated by the neglect of the notion of an independent volume and led by the appeal of Perel-

man's approach to solve the Poincaré conjecture, as well as by the equations following from the

low-energy limit of string theory, we developed the equations of Ricci flow gravity as a natural

extension of Einstein gravity. The main differences with regard to other scalar-tensor theories

were worked out in the framework of volumetric manifolds. The volume-preservation of the flow

turned out to be of decisive importance for the theory and allowed it to essentially agree with

Einstein's under non-cosmological settings and not too small distances in the case of vanishing

"total dilatonic charge".

Notes
1 for the dilaton general concept, see Sundrum [2]; for the connection of gravity to strings, see Ortín [3]

2 the expression in parenthesis in the r.h.s. of equation (2) has its own measure-theoretic meaning and is also known

under the name "Bakry-Émery" tensor (cmp. Lott [10])

3 in particular he envisages volume-preserving flows and certain diffeomorphic images thereof

4 see the recent monograph of Chow and Knopf [11] on Ricci flows (not covering Perelman's contributions), the intro-

duction by Topping [12], and the lecture notes by Morgan and Tian [13]

5 the factor -1 of φ  is purely conventional – here we follow Perelman [5], in contrast to string theory, where -2 is pre-

ferred

6 this is a local concept in contrast to the much weaker global definition of Huisken [26]

7 cmp. Jordan [27], Weinberg [28], part II, ch. 7, §3 and Fujii and Maeda [24]

8 this is suggested by his interpretation of the Kaluza-Klein decomposition

9 recall that around 1912–13 Nordström developed a precursor relativistic gravitational theory, where the gravitational

potential φ  obeys a Minkowskian potential equation, Δ φ  = 0. This was shown in 1914 by Einstein and Fokker to

admit a conformally Minkowskian formulation

10the arbitrary minus-sign is taken in view of cosmological applications

11we use troughout the sign- and units conventions of Misner, Thorne and Wheeler [29]

12the connection between some solutions of the Ricci flow equations for n = 3 and solutions of the Einstein equations

for n = 4 was further elaborated by Bleecker [30] and by List [31]

13except for a ''dilaton charge''; see the discussion in next section

14in the ''degenerate'' case r+  = r-  the metric is locally flat and the volume factor constant

15cmp. Garfinkle, Horowitz and Strominger [1]

16to compare, for JBD gravity to pass the current tests |ω | > 4 × 104  must be assumed
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17this allows the dilaton scalar to act ''repulsively'', as shown in Graf [4]

18e.g., for a ''multipole charge'' when the distance is much bigger than the individual ''charges''
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